چکیده

بهبوذ صحت آشکارسازی طبیعی بام ساختمانها از طریق تلفیق هوشمند روشهای تشخیص هدف در تصادیق فراطیفی

داوود علی‌خانی، سعید همایونی و محمد ساعد سرست

1. دانشجویی دکتری سنجش از دور. گروه مهندسی فناوری دریایی، برسی دانشکده فنی، دانشگاه تهران

2. استادیار سنجش از دور. گروه مهندسی فناوری دریایی، برسی دانشکده فنی، دانشگاه تهران

3. استادیار نوپرستی. گروه مهندسی فناوری دریایی، برسی دانشکده فنی، دانشگاه تهران

تاریخ دریافت مقاله: 1390/4/24
تاریخ پذیرش مقاله: 1390/5/22

کلیدواژه‌ها: تصادیق فراطیفی، آشکارسازی، سیستم استنتاج فازی، مختصه ROC

*موبیل‌موساری: کننده مسئول، نوپرستی و زبان. راد. برسی جدید دانشگاه راد. برسی دانشگاه فنی و مهندسی، گروه نوپرستی، تلفن: 09123593299
Email: davoodakbari62@gmail.com
دانشگاه آزاد اسلامی واحد فردوسی مشهد
دکتر قادر سکوت

1- مقدمه

فناوری سنجش از دور طبقی، در دو دهه گذشته به پیشرفت گسترده‌های هزاره‌ای بوده است. این پیشرفت در طراحی و ساخت سنجش‌دهنده‌ها و همچنین در توسعه و پیاده‌سازی روش‌های پردازش داده‌ها بسیار مشهور بوده است.

Landgrebe, 1999

2- تصویر فضای طبقی

در تحلیل سنجش‌دهنده‌های فضایی، معادله سیگنال‌های نقشه‌ای در تصویر نتیجه می‌شود که هیچگونه اطلاعات قبلی درباره آن‌ها وجود ندارد. به‌طور خاص اینکه سنجش‌دهنده‌ها مربوط به عوارض هستند که این مدل را کوتکر از ابعاد یک پیکسل دانست و نمی‌توان آن را به شیوه دیداری شناسایی کرد. در این شرایط شناسایی این عوامل با روشهای رادار اشکال‌سازی مبتنی بر بیکسل امکان‌پذیر نیست و پردازش‌ها باید در سطح زیرپیکسل و در بیکسل کار کرد.

3- ماهواره‌ای

که در پردازش داده‌های فضایی استفاده می‌شود، همگی جزو گروه‌های مختلف روشهای شناسایی اگر می‌گردد باید این اساس و با توجه به سطح داده به کار رفته، می‌توان به روش‌هایی از این دست اشاره کرد: کشف، طبقه‌بندی، شناسایی و تفکیک اشیا فضایی بازنمایی این داده‌ها برای محاسبات معمول‌سازی از فضای تصویری طبقی، فضای

1. Pattern Recognition
2. Image Space
3. Spectral Space
4. Feature Space
5. Mahalanobis Distance
6. Matched Filter Distance
7. Anomaly Detection
8. Spectral Distance Measures

AVIRIS

Change, 2003

در این زمینه پرسرد

Homayouni, 2003

روشهایی که در پردازش داده‌های فضایی
پیفهجوه بحث آشکارسازی طیفی یام ساختمان‌ها از طریق تلفیق هوشمند روش‌های تشخیص هدف در تصاویر فرآیندی

همایونی و روس در سال ۲۰۱۳ سه روش آشکارسازی طیفی را مورد بررسی قرار دادند (Homayouni, 2003). محققین آن‌ها نشان دادند که دو روش سیستماتیک طیفی (SCS) و کمیته‌سنگین (CEM) متقابل است. در همین سال، لومه به‌روزه (۲۰۰۳) با معنایی را به منظور آشکارسازی و طبقهبندی پوشش که با استفاده از الگوریتم‌های زاوه و الوسگی طیفی و حداکثر احتمال از روش تصاویر فرآیندی تحقیق Lumme, (۲۰۰۳) بر اساس AISA در سال ۲۰۰۴ به‌وسیله دو و چانگ بر روی تصویر AVIRIS و با استفاده از الگوریتم‌های زاوه طیفی و همچنین (SID) و طبقهبندی استفاده شدند. در سال ۲۰۰۴ در پنجپا نامه (Du, ۲۰۰۴) کارشناسی ارشد خود بر اساس استدلال full-pixel یک روش برخی از الگوریتم‌های آشکارسازی sub-pixel مورد بررسی قرار گرفت. در Cuprite و آشکارسازی های خود بر روی تصاویر Hymap به‌وسیله یک روش از منطقه NEVADA برای مدل‌های محاسباتی Mahalanobis می‌باشد. آن‌ها در رابطه بین مدل‌های ROC کردند. در منظور ارزیابی عملکرد آشکارسازی مورد استفاده قرار دادن افزایش در افزایش حداکثر احتمال امنیت و حداکثر فردیت به‌وسیله استفاده зیست‌شناسی و طبقهبندی تصویر AVIRIS در سال ۲۰۰۷. در نتیجه این تحقیقات، روش‌های مختلف آشکارسازی طیفی هدف ایجاد و ارزیابی شده است. است. در این روش لفیق روش‌های آشکارسازی طیفی به

1. Maximum likelihood classification
2. Receiver Operating Characteristic
3. Spectral Correlation
4. Deterministic Measure
5. Stochastic Measures
6. Spectral Matching
7. Spectral Similarity Value

References

Landgrebe, K. (1999). (Landgrebe, ۱۹۹۹)
2-1- آنفیس
تأکون کرونیما های متعددی برای آنکارسازی طیفی ارائه شده است (Chang, 2003). در این تحقیق با توجه به مشکلات دچار شده در مورد تصادف قرارتی، گیاهی که دارای مقدار و سرعت در تجربه و تحلیل این نوع داده ها هستند، مورد توجه قرار گرفته و

شکل 1. گروه‌های آنکارسازی طیفی مورد استفاده در تحقیق

1. Boolean Operator
2. Euclidian Operator
3. Confusion Matrix
1. سطح آشکارسازی طبیعی یا میانگین با استفاده از روش تغییر هوشمند یا تشخیص هدف در تصویر فضایی

در این رابطه، s_i و s_j به ترتیب اضلاع طبیعی
مربوط به دو بردار پیکسل I و J هستند و L تعداد
بندی‌های تصویر است. از آنجا که مقادیر را به طبیعی
عددی بین صفر تا ۹۰ است، از این رو برای داشتن
تصمیم‌گیری در باره صفر نیاز به استیل استخراج
ندیده گردیده شده بررسی این دو بردار است.

2-1-1-1 اندازه‌گیری های قطعی

ایده اصلی در روشهای هم‌پایی طبیعی تعريف یک
معیار شابدت بین بردار گویای مرجع، معرف تاریخ‌های
مورد شناسایی و تکنیک پیکسل‌های تصویر است. تا به
امروز در تحلیل داده‌های فضایی، دو خانواده از
عوارض مورد جستجو، شناسایی کرد.

(SAM) اندازه‌گیری زاویه طبیعی

این سیستم با استفاده از ضرب دایال و محاسبه زاویه
طبیعی بین دو بردار پیکسل مجهول برای
پیکسل تنشبین دو بردار را تعیین می‌کند و بدين
صفر محاسبه می‌شود (Yuhas, 1992).

رابطه (4)

$$SAM = \cos^{-1}\left(\frac{s_i \cdot s_j}{\|s_i\| \cdot \|s_j\|} \right)$$

$$= \cos^{-1}\left(\sum_{l=1}^{L} s_{il} s_{lj} \left(\frac{1}{\sum_{l=1}^{L} s_{il}^2} \right) \right)$$

در این رابطه، s_i و s_j به ترتیب اضلاع طبیعی
مربوط به دو بردار پیکسل I و J هستند و L تعداد
بندی‌های تصویر است. از آنجا که مقادیر را به طبیعی
عددی بین صفر تا ۹۰ است، از این رو برای داشتن
تصمیم‌گیری در باره صفر نیاز به استیل استخراج
ندیده گردیده شده بررسی این دو بردار است.

(CBD) اندازه‌گیری فاصله طبیعی

فاصله بین اضلاع طبیعی مربوط به دو بردار پیکسل،
می‌تواند به شکل نرم‌های I و J و به دست
Chang, اید، که بدين صورت محاسبه می‌شود (2003).

رابطه (1)

$$CBD = \sum_{l=1}^{L} |s_{il} - s_{jl}|$$

رابطه (2)

$$ED = \| s_i - s_j \| = \left[\sum_{l=1}^{L} (s_{il} - s_{jl})^2 \right]^{1/2}$$

رابطه (3)

$$TD = \max_{1 \leq l \leq L} \{ |s_{il} - s_{jl}| \}$$

1. Spectral Signatures
2. City Block Distance
3. Euclidean Distance
4. Tchebyshef Distance

سنگنجش دوز دور و ایران GIS
سال سوم ۳ شماره دوم ۱۳۹۰ تیپانسال
جامعه احتمال و واگرایی (داور‌چنگی) و بی‌نظمی (انترولوژی) میزان شاهدین بین بردار عارضه مورد نظر و هر پیکسل تصویر نمایید.

الف) داور‌چنگی اطلاعات طبیعی (SID)
تشاهدی طبیعی بین دو بردار پیکسل را براساس اختلاف توزیع احتمال به یاده آمده از اطلاعات طبیعی ((Chang, 2003)

راسته (7)

$SID = \sum_{l=1}^{L} p_l \log(p_l / q_l) + \sum_{l=1}^{L} q_l \log(q_l / p_l)$

در رواپردی مذکور به برچسب مولفه q_{jl} مربوط به دو بردار پیکسل j و l مقدار بردارهای هدف و پیکسل است و s_j و s_l هستند و بعد بردار با تعداد باندهای تصویر است. در این روش، نماینده داشتن تصویری در یک صفر تا یک لازم است مقدار به اردن نرم‌پایه شود.

(6) مقدار تشاهدی طبیعی (SSV)
روش اندازه‌گیری مقدار تشاهدی طبیعی، ترکیبی از دو روش تشاهدی همبستگی و فاصله طبیعی در نرم با استفاده از صفر و یک و دو صفر، تعریف می‌شود (مروری کردن (2003)

راسته (8)

$JMD = \sqrt{\sum_{l=1}^{L} [p_l - q_l]^T}$

در رواپردی نشسته شده به برچسب p_i مولفه طبیعی q_i مربوط به دو بردار پیکسل l و j هستند و بعد بردار است. با اندازه‌گیری کردن خروجی الگوریتم، می‌توان به تصویری بین صفر تا یک رسید.

(7) تشاهدی همبستگی طبیعی (SCS)
معیار دیگر برای شاهدی طبیعی همبستگی برسون بین دو بردار است و طبق رابطه‌ای که در پی می‌آید.

(Homayouni, 2003)

$SCS = \frac{1}{n-1} \left(\sum_{l=1}^{L} (s_{il} - \mu_{sl})(s_{jl} - \mu_{sj}) \right)$

در این رابطه، μ میانگین و σ انحراف میانگین s_i و s_j مقدار بردارهای هدف و پیکسل است و s_i و s_j امضا طبیعی مربوط به دو بردار L تعداد باندهای فرایند n و صفر یک مقدار همبستگی بین n محدود مشاهده‌اند، که مقدار همبستگی s_i و s_j به آن، بیانگر شاخص زیاد بین دو پیکسل است. در این ذکر شده، برای داشتن تصویری در یک صفر تا یک مقدار منفی در نظر گرفته می‌شود.

(2-1-2) اندازه‌گیری همبستگی آماری
روش اندازه‌گیری SSV به صفر نزدیک‌تر باشند. نشان‌دهنده همبستگی بین دو بردار پیکسلی است. مقادیر SSV در باره $1 \sqrt{\sum_{l=1}^{L} [p_l - q_l]^T}$ مقدار می‌گیرد. از این رو برای داشتن تصویری در یک صفر تا یک می‌باشد.

$SSV = \sqrt{ED^2 + (1 - SCS)^2}$

هر چه مقدار SSV به صفر نزدیک‌تر باشد، نشان‌دهنده همبستگی بین دو بردار پیکسلی است. مقادیر SSV در باره $1 \sqrt{\sum_{l=1}^{L} [p_l - q_l]^T}$ مقدار می‌گیرد. از این رو برای داشتن تصویری در یک صفر تا یک می‌باشد.
2-3- آشکارسازی آنالووی

هدف از آشکارسازی آنالووی تعیین موقعیت و جستجو برای عوارض است که به طور کلی در مکان نشان دهنده نیستند، اما نسبتاً کوچک هستند، و احتمال رخ دادن کندانی در تصاویر ندارند. روش های مذکور براساس خصوصیات ماتریس کواریانس و یا کووایشون به آشکارسازی عرضه مورد نظر می‌پردازند.

الف) کمیته‌سازی مقایسه‌ای (CEM)

در روش کمیته‌سازی مقایسه‌ای براساس بردار عارضه مورد نظر از فیلترهای مثل و تراکمی می‌شود که بعد از اعمال آن به داده‌های قطبانی، تصویر به دست می‌آید که در آن پیکسل‌های مشابه عارضه آشکارتر شده، برای این سیستم اسباب و رابطه‌ای که در بین می‌آید مقدار هر پیکسل در تصویر نهایی محاسبه می‌شود (Harsanyi, 1993):

\[y_i = \sum_{l=1}^{L} w_l T_l = w^T T_i \]

\[w = \frac{R_{L \times L}^{-1} d}{d^T R_{L \times L}^{-1} d} \]

در روابط مذکور، ۲ مجموعه تصاویر ورودی و تصویر نهایی و ماتریس خودهمبستگی R از ماتریس کواریانس L تخمین می‌شود (Autocorrelation Matrix) با استفاده توابع است. در تصویر نهایی هر مقادیر پیکسل به مقدار یک تبدیل می‌شود، بدین‌گونه موادی شبیه به عارضه مورد نظر در این پیکسل است.

ب) فاصله (MD) ماتریسی ماتریسی

فاصله Bhattacharyya فاصله (MD)که به وسیله رابطه‌ای که در ادامه ذکر شده تعریف می‌گردد، دو ماتریس طبقه بندی K یا 1 را با استفاده از ماتریس مایکر این کواریانس مربوط به آنها (K) طبقه به بندی می‌کند.

\[\text{Bhattacharyya} = \frac{1}{\pi} \ln \frac{1}{K} \]

1. Bhattacharyya Distance
2. Covariance-based Mahalanobis Distance
3. Correlation-based Mahalanobis Distance

103
مقادیر انطباق برگردان با هدف احتمال تعلق دو عارضه به یک گروه واحد به میزان پیش‌بینی شده. این معیار به CMFM اشاره دارد (Chang, 2002) و به صورت رابطه (13) مشخص می‌شود.

\[\text{RAF} = (s_i - \mu)^T K_{L1L}^{-1} (s_j - \mu) \]

علاوه بر این، اگر K_{L1L}^{-1} در رابطه (13) با میکوس ماتریس همسنجشی R_{L1L} (جایگزین شود، RMFM) با رابطه 14 شکل می‌گیرد. (Chang, 2002)

\[\text{RMFM} = s_i^T R_{L1L}^{-1} s_j \]

5 طبقه‌بندی جدایگر احتمال (MLC)

قاعدتاً تصمیم‌گیری طبقه‌بندی جدایگر احتمال، مبنایی بر احتمال است و در پیکسل به کلاسی تعلق می‌گیرد که در آن مقدار احتمال بیشتری (ماکزیموم) باشد. بر این اساس، رابطه (15) است

\[\text{MLC} = -\ln |K_i| - (s_i - \mu)^T K_{L1L}^{-1} (s_i - \mu) \]

در رابطه ذکر شده، K_i به ترتیب میانگین و ماتریس کوارانس هستند و s_i نشانه طیفی مربوط به یک پرداز پیکسل است.

2-2-2- 1- 1- حداکثر احتمال (ED)

در این روش از خروجی‌های الگوریتم‌ها به عنوان بین صفر تا 1 استفاده می‌شود. از این رو فاصله اقلیدسی بین دو رشته نخست بین دو صورت تعریف می‌شود.

\[ED = \sqrt{(DN_{SAM} - 1)^T + (DN_{SCS} - 1)^T} \]

سپس با اعمال حد آستانه مناسب روی می‌توان به نشان دهند دست یافتن

2-2-3- استنتاج فازی (FIS)

استنتاج فازی شامل سه بخش اصلی است که عباراتند از: عمده‌گرایی منطق فازی تا با تابع عضویت و قوانین OR AND، عمده‌گرایی منطق فازی شما: THEN فازی است که در ترکیب فرضیات در قسمت مقدم قرار داشته باشد. این عمده‌گرایی تعیین می‌شود که در این تحقیق از عمده‌گرایی منطقی سوگند استفاده شده است. تابع عضویت برای فازی سازی منطق‌های زبانی به کار می‌رود. این تابع را می‌توان به ضریب گوناگونی تعیین کرد که در این تحقیق برای قابلیت اطمینان که در تعریف آنها مشابه شکل 2 تعریف می‌شود این شکل اورده شده است. برای تعیین تابع عضویت فازی، می‌باشد فقط از مرحله مطلق رابطه‌ای که در یک می‌آید، چهار پارامتر a, b, c, d را تنظیم کند.

دندان‌کریمی و همکاران

سنگلج از دور و ایران
سال سوم 13 گشاده دوم 1390، 144
به‌وoduhat آشکارسازی طبیعی یام ساختمانها از طریق تلفیق هوشمند روش‌های تشخیص هدف در تصور فراطبیعی

2- میزان ارزیابی نتایج آشکارسازی طبیعی

به‌منظور ارزیابی نتایج، ابتدا نقشه واقعی را به مدت یک هفته مورد توجه قرار داده و سپس از جمله آشکارسازی طبیعی با آن مقایسه می‌گردد و م nguyện حداکثر در ماتریس خطای هدف مورد نظر تعیین می‌گردد و سپس این چهار میزان تولید می‌شود: دقیق (OA)، ضریب آماری (K)، نوز و عدم اطمیان (1) از ماتریس خطا. به عورت تغییر مجموع تعداد یکی های عرضه و زیمتلی‌های گر اگر به استثنای طبقهبندی شده اسم، بر یک یکی های نشان می‌دهد. عدم اطمیان نیز از تغییر مجموع تعداد یکی های عرضه و زیمتلی‌های گر اگر به استثنای داخل کلاس زیمتلی‌های گر فهرست پیشینه به‌وود روش به‌وود می‌‌آید.

در این تحقیق برای هر متغیر ورودی دو تابع عضویت در نظر گرفته می‌شود و از آنجا که هدف آشکارسازی ساختمان‌های متغیر خروجی دارای دو حالت صفر و یک خواهد بود.

ANFIS 2-2-2

اصل این این روش مشابه روش استنتاج فازی است. با این تفاوت که در روش استنتاج فازی تابع عضویت، عناوین و عملکرد مرتبط، دستی و به‌وود روش سعی و خطا و با کمک فردی خبره تنظیم می‌شوند، در حالی که در ANFIS با استفاده از داده‌های آموزشی مقدار به‌وود پارامترهای تابع عضویت انتخاب را مشخص می‌کند و سپس مشابه روش استنتاج فازی به‌وود اطلاع‌برده می‌باشد. روش ANFIS سپس بروز افتاده است. برای اگاهی از مشابهی این، نک. (1993) برای کاهش پارامترهای پراین‌سازی

از تابع عضویت مشابه شکل استفاده شده است.

*1. Neuro-Fuzzy
2. Overall Accuracy
3. Kappa coefficient
4. Mis-Matching
5. Detection power
6. Positive Probability
7. False Alarm Probability*
فرآیندی با قدرت تکنیک طیفی با حداکثر تعداد باند 744 که در عمل اقدام جدی آستانه به بیشترین متغیرها از طریق فرآیند با قدرت تکنیک طیفی محدودهای شامل 1/7 میکرویومترا به دست می‌آید. فرآیند تکنیک مکانی سنجیده نیز به ارتفاع سکوی حامل - غنی هواپیما - تستگی دارد و از 1/100 متر متغیر است.

بطول طیفی و قدرت تکنیک 2 متر هستند که در ماه سال 2001 از منطقه شیری تولوز واقع در جنوب فرانسه برداشت شدند. از این تصاویر، مناطق مختلفی که اهداف مورد نیاز برای شناسایی را در خود داشتند، انتخاب و ارزیابی شدند. شکل 4-1 نرخ رنگی کاذب‌ی را از یک منطقه، شامل 128 در 128 بیکسل نشان می‌دهد.

برای ارزیابی کیفی و محاسبه ماتریس خطای، با انجام تفسیر صورتی دقیق، مشاهده طیف مواد مختلف، نشان واقعیت زمین‌نما محقق که بیکسل‌های منطقه به کلاس هدف - غنی هواپیما مختصه - از خود داشت استخراج شد (شکل 4-2). منحنی طیفی آن نیز بوسیله میانگین گیری از طیف بیکسل‌های انتخاب شده به صورت دستی ایجاد گردید (شکل 4-3).

دراکوکری و همکاران

3- آزمون‌های عملی

در این بخش ابتدا خصوصیات داده‌های مورد آزمون تشریح می‌شود. سپس نرم‌افزار پیاده‌سازی شده براساس میان‌گیری مطرح شده در بخش پیشین ارائه می‌گردد. در ابتدای آن با پایش علت تحقیق، فرآیند آزمون‌ها و اجرای آزمون به‌صورت گام به گام و کمی‌رازه می‌شود.

3-1- داده‌های مورد آزمون

برای انجام این تحقیق از داده‌های تصویری سنجیده استفاده شده است. منجني احتمال آشکارسازی در برای احتمال تشخیص اشباه و (2) منجي احتمال آشکارسازی در برای حد آستانه

شکل 3- (1) منحنی احتمال آشکارسازی در برای احتمال تشخیص اشباه و (2) منحنی احتمال آشکارسازی در برای حد آستانه

CASI

GIS

سنگش از دور و ایران

سال همواره، دوم، سال ۱۳۹۰

105
بهبود صحت آشکارسازی طبیعی یاساختمانها از طریق تلفیق هوشمند روش‌های تشخیص هدف در تصاویر فراطبیعی

شکل 4: 1- ترکیب رنگی کداب تصویر (CASI (R=0.914, G=0.620, B=0.451)) 2- داده‌های جمع‌آوری‌شده به منظور آزمایش کمی و 3- محتوی طبیعی مربوط به پشتیبانی ساختمان‌ها

جدول 1. کمیته‌های محاسبه‌شده در آزمایش صحت آشکارسازی طبیعی

<table>
<thead>
<tr>
<th>کمیته‌ها</th>
<th>ED</th>
<th>CBD</th>
<th>TD</th>
<th>SAM</th>
<th>SCS</th>
<th>SSV</th>
<th>S1D</th>
</tr>
</thead>
<tbody>
<tr>
<td>انتخاب‌گیری</td>
<td>2384</td>
<td>2390</td>
<td>2391</td>
<td>2392</td>
<td>2393</td>
<td>2394</td>
<td>2395</td>
</tr>
<tr>
<td>آماری</td>
<td>2386</td>
<td>2397</td>
<td>2398</td>
<td>2399</td>
<td>2400</td>
<td>2401</td>
<td>2402</td>
</tr>
<tr>
<td>آماری</td>
<td>2403</td>
<td>2404</td>
<td>2405</td>
<td>2406</td>
<td>2407</td>
<td>2408</td>
<td>2409</td>
</tr>
</tbody>
</table>

۲-۲- آزمون‌های انجام شده

آزمون‌های انجام گرفته در این بخش را می‌توان در سه گروه کلی بیان داد:

الف) آزمون‌های ارزیابی صحت گزارش کمی آنالیز

ب) آزمون‌های مقایسه روش‌های تلفیق نتایج

(ج) آزمون‌های تلفیق یک‌گانه کلیه الگوریتم‌های ANFIS

هدف از انجام این آزمون‌های دسته نخست، انتخاب الگوریتم‌های آشکارسازی طبیعی با صحت بالاتر در هر دسته است. بدین‌طور که الگوریتم دسته انددازه‌گیری نقیضی، دو الگوریتم دسته انددازه‌گیری آماری و تشخیص الگوریتم دسته آشکارسازی نوپاپایی و در مجموع ۱۴ الگوریتم آشکارسازی طبیعی تشريح شده در بخش ۲-۲ مورد آزمون قرار گرفت. شکل ۵ نتایج حاصل از اعمال روش‌های انددازه‌گیری نقیضی، انددازه‌گیری آماری و آشکارسازی نوپاپایی را نشان می‌دهد. در جدول ۱ نیز کمیته‌های محاسبه شده از ماتریس خطا برای هر سه دسته از الگوریتم‌های مذکور نشان داده شده‌اند.
اداره اکبری و همکاران

شکل ۱ - تصاویر بعدی از اعمال الگوریتم‌های ANFIS (۱) انداره‌گری فاصله طبقی (ترم ۱)، (۲) انداره‌گری فاصله طبقی (ترم ۲) و (۳) انداره‌گری فاصله طبقی (ترم ۳).

هدف از انجام آزمون‌های «ب» تلیفیق الگوریتم‌های آشکارسازی انتخابی در دو مرحله متوالی است. در مرحله نخست الگوریتم‌های آشکارسازی انتخابی در هر دسته با هم تلفیق می‌شوند و برای هر دسته یک تصویر آشکارسازی به دست می‌آید. در مرحله دوم سه تصویر آشکارسازی طبقی حاصل از سه دسته الگوریتم با هم تلفیق می‌شوند تا یک تصویر آشکارسازی نهایی به دست آید. این مرحله هر دو مرحله آزمون‌ها با چهار مدل مختلف تلیفیق تکشید شده و در خش-۲ صورت می‌گیرد که با تهیه‌نورا تلفیق نیز در این مدل تیمینگ گردید. شکل ۶ نتایج کیفی تلفیق الگوریتم‌های GIS می‌تواند و رابطه بینی فاصله فاصله فاصله فاصله فاصله فاصله فاصله فاصله اشکارسازی را در دو مرحله با روش‌های مختلف نشان می‌دهد. در جدول ۲ نتایج کیفی این آزمون‌ها به دست آمده است. این نتایج کیفی نشان می‌دهد که اکبری و همکاران
بهبود صحت آشکارسازی طبیعی بام ساخته ماند شکل ها از طریق تلفیق هوشمند روش های تشخیص هدف در تصاویر فراطبیعی

شکل ۶ (a) نتایج بدست آمده از آستانه پرتاب در ترکیب (1) RMFM و CMFM, JMD و SID و SAM (2) SCS و SAM (3) RMFM و CMFM, JMD و SID و SAM (4) RMFM و CMFM, JMD و SID و SAM (5) RMFM و CMFM, JMD و SID و SAM (6) RMFM و CMFM, JMD و SID و SAM (7) RMFM و CMFM, JMD و SID و SAM (8) RMFM و CMFM, JMD و SID و SAM

شکل ۷ (a) نتایج بدست آمده از روی استنتاج الفازی در ترکیب (1) RMFM و CMFM, JMD و SID و SAM (2) RMFM و CMFM, JMD و SID و SAM (3) RMFM و CMFM, JMD و SID و SAM (4) RMFM و CMFM, JMD و SID و SAM (5) RMFM و CMFM, JMD و SID و SAM (6) RMFM و CMFM, JMD و SID و SAM (7) RMFM و CMFM, JMD و SID و SAM (8) RMFM و CMFM, JMD و SID و SAM

شکل ۸ (a) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (b) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (c) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (d) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (e) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (f) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (g) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (h) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (i) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (j) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (k) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (l) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (m) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (n) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (o) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (p) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (q) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (r) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (s) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (t) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (u) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (v) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (w) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (x) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (y) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (z) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (a) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (b) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (c) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (d) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (e) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (f) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (g) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (h) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (i) نتایج بدست آمده از روی آنتی و اکتی زمینی و ANFIS در ترکیب همکنان RMFM و CMFM, JMD و SID و SAM (j) نتایج بدست آمده از روی آنتی و اکتی ZMEN (چی)
جدول 2- ارزیابی دقت ترکیب روش‌ها

<table>
<thead>
<tr>
<th>الگوریتم ترکیب</th>
<th>F.ED</th>
<th>F. BO</th>
<th>FIS</th>
<th>ANFIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- SAM,SCS</td>
<td>0/462</td>
<td>0/452</td>
<td>0/479</td>
<td>0/4973</td>
</tr>
<tr>
<td>2- SID, JMD</td>
<td>0/463</td>
<td>0/452</td>
<td>0/467</td>
<td>0/4927</td>
</tr>
<tr>
<td>3- CEM,CMFM, RMFM</td>
<td>0/468</td>
<td>0/452</td>
<td>0/450</td>
<td>0/4927</td>
</tr>
<tr>
<td>1.2.2</td>
<td>0/461</td>
<td>0/452</td>
<td>0/467</td>
<td>0/4927</td>
</tr>
<tr>
<td>1- SAM,SCS</td>
<td>0/462</td>
<td>0/452</td>
<td>0/479</td>
<td>0/4973</td>
</tr>
<tr>
<td>2- SID, JMD</td>
<td>0/463</td>
<td>0/452</td>
<td>0/467</td>
<td>0/4927</td>
</tr>
<tr>
<td>3- CEM,CMFM, RMFM</td>
<td>0/468</td>
<td>0/452</td>
<td>0/450</td>
<td>0/4927</td>
</tr>
<tr>
<td>1.2.2</td>
<td>0/461</td>
<td>0/452</td>
<td>0/467</td>
<td>0/4927</td>
</tr>
</tbody>
</table>

سنجش از دور و ایران
سال سوم شمسی، شماره دوم، تابستان 1390
بهبود صحت آشکارسازی طبیعی به‌وسیله هوشمند روش‌های تشخیص هدف در تصاویر فراطیفی

اندانگ‌های قطعی و آماری دارای پاسخ صحیح‌تری هستند.

![شکل 8: صحت روش‌های مختلف آشکارسازی طبیعی](image)

![شکل 9: مقایسه صحت نتایج تلفیق با روش‌های مختلف](image)

پهردی تلفیق الگوریتم‌های آشکارسازی طبیعی تا انجا با
پیش‌ترین صحت هر روش بوده است. به این ترتیب در ادامه تحقیق قرار شد روش ANFIS به صورت مستقیم و بکیج در یک مرحله روی هر هفت الگوریتم آشکارسازی انتخاب اعمال شود، تا اینکه به روش و خصوصاً کاربرد در انتخاب مراحل
الگوریتم‌ها کاهش یابد و دوم اینکه تست‌کشت نتایج الگوریتم‌ها با هم پیشتر صحت را احتمال‌دهی به
نتیجه‌ای با چالش بالاتری، پیشتر شود. صحت کابایی در رابط آخر جدول 2 مؤید همین استدلال بوده
همانطور که در شکل 10 دیده می‌شود، در چهار
مرحله به تدریج صحت آشکارسازی بهبود یافته است.
در مرحله نخست روش آشکارسازی طبیعی در
دسته آشکارسازی آنومالی بهترین صحت را داشته
است. در مرحله دوم تلفیق الگوریتم‌های انتخاب دسته آشکارسازی آنومالی با کمک روش ANFIS باعث بهبود چشمه صحت از 880/83 به 894/80 می‌شود. در نتیجه مدل تلفیق الگوریتم ANFIS به روش معنی‌داری صحت نا
اجامه‌دهنده است. در مرحله سوم تلفیق الگوریتم ANFIS به روش معنی‌داری صحت نا
که در کلیه آنالوسیون، صحت نتیجه تلفیقی با روی کلیه,
SAM ,SCS ,SID, JMD ,CEM ,CMFM ,RMFM
 beat-1990, افزایش

![پهردی تلفیق صحت در تلفیق الگوریتم‌های
آشکارسازی طبیعی](image)

![شکل 10: بهبود تدریجی صحت در تلفیق الگوریتم‌های
آشکارسازی طبیعی](image)

علت این امر در مدل سایپی پیکسل‌های مختلف در
dسته الگوریتم‌های آشکارسازی آنومالی است. همچنین
نحوه انتخاب الگوریتم‌های آشکارسازی بهبودی
در مقایسه با انتخاب روش تلفیق آنان دارد، زیرا صحت
tصاویر تلفیقی صرف‌نظر از روش تلفیق به کار رفته
شده تقریباً یکی است. از نظر دیگر، تلفیق نتایج
مرحله نخست به دسته الگوریتم آشکارسازی با روش
به طور معنی‌داری باعث افزایش صحت بود.
ANFIS به روش عملکرد بیولوژیک کاهش صحت - شده است.
به‌طور جدید، فاصله اقلیدسی و فازی جدید تغییر
صحت معنا‌داری مشاهده نمی‌شود. به این ترتیب،
می‌توان نتیجه گرفت که اعمال روش ANFIS در دو
بخش نهایی بهینه‌سازی به‌نواحی همگون با توجه به

4- نتیجه‌گیری و پیشنهادها

در این مقاله، روشهای انتخاب همگونی آشکارسازی طبقی

هدف و شیوه‌های تلقیف آنها در آنالیز تغییر فضایی

مورد بررسی قرار گرفت. با توجه به حجم بالای تصاویر

فرمری وای در پیش‌تر اطلاعات سطحی انتخاب شده، پرداخت

سرعت و دقیقه متناظر قرار گرفته است. به طوری که

بتوان در کمترین زمان ممکن به دقتی ترین نتایج

رسیده‌ای این الگوریتم‌ها براقی آشکارسازی فقط به

اطلاعات طبقی هدف مورد نظر نیاز است. در بین

الگوریتم‌های آشکارسازی طبقی که از معیارهای قطعی

استقلال کنند، الگوریتم‌های همبستگی طبقی و

زاویه طبقی با موقعیتی نسبی در کشف هدف مورد نظر

همراه هستند، به طوری که حاصل در این کشف نیز در برخی

مناطق که موانع نسبتاً ممانعی دارد، زیاد است.

الگوریتم‌های مقدار تشابه طبقی و فاصله از این نظر در

مراتب بعدی قرار می‌گیرند.

همچنین دو الگوریتم آماری مطرح شده در این

مقاله در مقایسه با الگوریتم‌های قطعی نتایج بهتری را

به دست می‌دهند و میزان تفاوت و عدم اطمینان در آنها

کمتر است. در بین الگوریتم‌های آشکارسازی آنالوگی

الگوریتم‌های الگوریتم‌های مقدار به‌ارزی و همبستگی

اطبقی - چه از نظر کمی و چه از نظر کیفی - با

موقعیتی نسبی همراهند. در حالتی که سه الگوریتم

dگر دقت با باینیت دادن و میزان خطا در آنها زیاد

است. در بین روشهای تلقیف نیز روش ANFIS در

مقایسه با روش‌های عمومی‌تر و فاصله اقیانوسی و

استنتاژ فازی، نتایج بهتری را در حد 90 درصد به

همراه دارند.

در تحقیقات آتی، به‌منظور بهبود صحت

آشکارسازی، پیشنهاد می‌شود که علاوه بر استفاده از

اطلاعات طبقی در فرآیند تحقیق، از اطلاعات مکانی

عوارض نیز استفاده شود. بدین منظور می‌توان برای

دلالات همبستگی مکانی به روش‌هایی مانند

Lumme J.H., 2003, Classification of Vegetation and Soil Using Imaging Spectrometer
Data, Institute of Photogrammetry and Remote Sensing, Helsinki University of Technology, P.O.Box 1200, FIN-02015 HUT.

