تحليل و مدل‌سازي همبستگي بين LAI و شاخص‌هاي گياهي حاصل از مشاهدات طيف‌سنجي

علي‌اکبر آبکار, علیرضا صفدری‌نژاد, مجتبی زمانی, سیدرضا صوف‌باف, نبی‌اله غلامی بیدخانی, امید غفاری

چکیده


بررسي خصوصيات انواع پوشش‌هاي گياهي به‌عنوان يكي از پارامترهاي مؤثر در تبادل انرژي بين جو و سطح زمين در مطالعات زيست‌محيطي، منابع طبيعي و کشاورزي اهميت بسياري دارد. امروزه فناوري سنجش ‌از ‌دور با ارائة اطلاعات طيفي گسترده و متنوع موجب تسهيل در مطالعة پوشش‌هاي گياهي در سطح زمين و به‌ويژه تخمين پارامترهاي بيوفيزيکي آنها شده است. يکي از مهم‌ترين پارامترهاي فيزيکي به‌کار گرفته‌شده در تحليل‌هاي مختلف مربوط به مطالعة پوشش‌هاي گياهي، شاخص سطح برگ  (LAI) است. در پژوهش حاضر ضمن تحليل و مدل‌سازي ارتباط بين LAI و شاخص‌هاي گياهي مختلف، با استفاده از مشاهدات طيف‌سنجي آزمايشگاهي، به بررسي محدوديت‌هاي مدل رياضي موجود در برآورد LAI، ارائة راهکارهايي به‌منظور افزايش دقت و صحت نتايج اين مدل و همچنين طراحي يک شاخص جديد پرداخته شده ‌است. نتايج نشان دادند که از ميان شاخص‌هاي گياهي متداول، دو شاخص Simple Ratio و SAVI-2 داراي کمترين RMSE (حدود 08/0 در واحد LAI) بوده و شدت اشباع‌شدگي مدلي که برازش‌ داده‌اند از شاخص‌هاي ديگر کمتر است. دو شاخص مذکور کارايي بالاتري در تخمين LAI به‌ويژه در مناطق با تراکم پوشش گياهي آنها زياد، دارند و مي‌توان با اطمينان بالايي در مدل‌سازي خطي برآورد LAI از آنها استفاده کرد.


واژگان کلیدی


شاخص سطح برگ، شاخص پوشش گياهي، طيف‌سنجي، آناليز حساسيت

تمام متن:

PDF

منابع و مآخذ مقاله


Atzberger, C., 1997, Estimates of Winter Wheat Production through Remote Sensing and Crop Growth Modeling, VWF Verlag, Berlin, Germany.

Bacour, C., Jacquemoud, S., Tourbier, Y., Dechambre, M. & Frangi, P., 2002, Design and Analysis of Numerical Experiments to Compare Four Canopy Reflectance Models, Remote sensing of Enivronment, 79(1), PP. 72-83.

Baret G. & Guyot F., 1991, Potentials and Limits of Vegetation Indices for LAI and APAR Assessment, Remote Sensing, Environment, Vol. 35, PP. 161–173.

Broge, N.H. & Leblanc E., 2000, Comparing Prediction Power and Stability of Broadband and Hyperspectral Vegetation Indices for Estimation of Green Leaf Area Index and Canopy Chlorophyll Density, Remote Sensing of Environment 76,

PP. 156-172.

Broge, N.H. & Mortensen, J.V., 2002, Deriving Green Crop Area Index and Canopy Chlorophyll Density of Winter Wheat Fromspectral Reflectance Data, Remote Sensing of Environment, 81(1), PP. 45–57.

Brown, L., Chen, J.M., Leblanc, S.G. & Cihlar, J. 2000. A shortwave infrared modification to the simple ratio for LAI retrieval in boreal forests: An image and model analysis. Remote Sensing of Environment, 71, PP. 16–25.

Chen, J.M. & Cihlar, J., 1996, Retrieving Leaf Area Index of Boreal Conifer Forests using Landsat TM Images, Remote Sensing of Environment, 55 (2), PP. 153–162

Chen, J.M., Pavlic, G., Brown, L., Cihlar, J., Leblanc, S.G., White, H.P., Hall, R.J., Peddle, D.R., King, D.J. & Trofymow, J.A., 2002, Derivation and Validation of Canada-wide Coarse-resolution Leaf Area Index Maps using High-resolution Satellite Imagery and Ground Measurements, Remote Sensing of Environment, 80 (1), PP. 165–184.

Cohen, W.B., Maiersperger, T.K., Gower, S.T., Turner, D.P., 2003. An Improved Strategy for Regression of Biophysical Variables and Landsat ETM+ Data, Remote Sensing of Environment, 84 (4), PP. 561–571.

Darvishzadeh, R., Skidmore, A.K., Atzberger, C. & Sip van Wieren, 2008, Estimation of Vegetation LAI from Hyperspectral Reflectance Data: Effects of soil type and plant architecture, International Journal of Applied Earth Observation and Geoinformation, 10, PP. 358–373.

Darvishzadeh, R., Atzberger, C. & Skidmore, A.K., 2009, Leaf Area Index Derivation from Hyperspectral Vegetation Indices and the Red Edge Position, International Journal of Remote Sensing, Vol. 30, No. 23, PP. 6199-6218.

Darvishzadeh, R. et al., 2008, LAI and Chlorophyll Estimation for a Heterogeneous Grassland using Hyperspectral Measurements, ISPRS Journal of Photogrammetry and Remote Sensing, 63(4), PP. 409-426.

Deering D.W. & Rouse J.W., 1975, Measuring "Forage Production"of Grazing units from Landsat MSS Data, International Symposium on Remote Sensing of Environment, 10th, Ann Arbor, Mich,

PP. 1169-1178.

Dorigo, W. et al., 2007, A Review on Reflective Remote Sensing and Data Assimilation Techniques for Enhanced Agroecosystem Modeling, International journal of applied earth observation and geoinformation, 9(2), PP. 165-193.

Houborg, R., Soegaard, H. & Boegh, E., 2007, Combining Vegetation Index and Model Inversion Methods for the Extraction of Key Vegetation Biophysical Parameters using Terra and Aqua MODIS Reflectance Data, Remote Sensing of Invironment, 106, PP. 39-58.

Huete, A.R., 1988, A Soil-adjusted Vegetation index (SAVI), Remote Sensing of Environment, 25, PP. 295-309.

Lee, K.S., Cohen, W.B., Kennedy, R.E., Maiersperger, T.K. & Gower, S.T., 2004, Hyperspectral versus Multispectral Data for Estimatingleaf Area Index in four Different Biomes, Remote Sensing ofEnvironment, 91 (3–4), PP. 508–520.

le Maire, G. et al., 2011, Leaf Area Index Estimation with MODIS Reflectance Time Series and Model Inversion during Full Rotations of Eucalyptus Plantations, Remote Sensing of Environment, 115(2), PP. 586-599.

Liang, L. et al., 2011, Wheat Leaf Area Index Inversion using Hyperspectral Remote Sensing Technology, Spectroscopy Spectral Analysis, 31(6), PP. 1658-1662.

Lin, H. et al., 2013, Wheat Leaf Area Index Inversion with Hyperspectral Remote Sensing based on Support Vector Regression Algorithm, Transactions of the Chinese Society of Agricultural Engineering, 29(11), PP. 139-146.

Major, D.J., Baret, F. & Guyot, G., 1990, A Ratio Vegetation Index Adjusted for Soil Brightness, International Journal of Remote Sensing, 11 (5), PP. 727–740.

Myneni, R.B., Ramakrishna, R., Nemani, R. & Running, S.W., 1997, Estimation of Global Leaf Area Index and Absorbed par using Radiative Transfer Models, IEEE Transactions on Geoscience and Remote Sensing, 35 (6), PP. 1380–1393.

Pearson, R.L. & Miller, L.D., 1972, Remote Mapping of Standing Crop Biomass for Estimation of the Productivity of the Short-grass Prairie, Pawnee National Grassland, Colorado, 8th International Symposium on Remote Sensing of Environment, ERIMA, Ann Arbor, MI,

PP. 1357–1381.

Peterson, D.L., Spanner, M.A., Running, S.W. & Teuber, K.B., 1987, Relationship of Thematic Mapper Simulator Data to Leaf Area Index of Temperate Coniferous Forests, Remote Sensing of Environment, 22 (3), PP. 323–341.

Pierce, L.I. & Runnings, S.W., 1988, Rapid Estimation of Coniferous Forest Leaf Area Index using a Portable Integration Radiometer, Ecology, 69, PP. 1762-1767.

Richardson, A.J. & Wiegand, C.L., 1977, Distinguishing Vegetation from Soil Background Information, Photogrammetric Engineering and Remote Sensing, 43,

PP. 1541–1552.

Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W. & Harlan, J.C., 1974, Monitoring the Vernal Advancement of Retrogradation of Natural Vegetation, NASA/GSFC, Type III, final report, Greenbelt, MD.

Schlerf, M., Atzberger, C. & Hill, J., 2005, Remote Sensing of Forest Biophysical Variables using HyMap Imaging Spectrometer Data, Remote Sensing of Environment, 95 (2),

PP. 177–194.

Tucker, C.J., 1979, Red and Photographic Infrared Linear Combinations for Monitoring Vegetation, Remote Sensing of the Environment, 8, PP. 127-150.

Turner, D.P., Cohen, W.B., Kennedy, R.E., Fassnacht, K.S. & Briggs, J.M., 1999, Relationships between Leaf Area Index and LandsatTM Spectral Vegetation Indices across three Temperate Zone Sites, Remote Sensing of Environment,

(1), PP. 52–68.

Van der Meer, F. et al., 2001, Spatial Scale Variations in Vegetation Indices and above-ground Biomass Estimates: Implications for MERIS, International Journal of Remote Sensing, 22(17),

PP. 3381-3396.

Wiegand, C.L., Maas, S.J., Aase, J.K., Hatfield, J.L., Pinter, P.J.Jr., Jackson, R.D., Kanemasu, E.T. & Lapitan, R.L., 1992, Multisite Analyses of Spectral - biophysical Data for Wheat, Remote Sensing of the Environment, 42, PP. 1 -21.


ارجاعات

  • در حال حاضر ارجاعی نیست.