ارائۀ روشی برای اصلاح نوفۀ نواری آشکارسازها در تصاویر اخذشده به‌وسیلۀ سنجندۀ TM ماهوارۀ لندست 5

محمدرضا مباشری, عرفان امرائی

چکیده


نوفۀ آشکارسازها در تصاویر ماهواره‌ای معمولا به صورت نوارهای افقی یا عمودی دیده می‌شوند. جهت نوارشدگی‌ها به تکنیک تصویربرداری سنجنده (پوش‌بروم یا ویسک‌بروم) بستگی دارد. در تصاویر سنجندۀ TM نیز برخی نوارشدگی‌ها دیده می‌شود که منشأ آنها آشکارسازهاست. از دلایل پیدایش نوفۀ نواری در تصاویر اخذشده به‌وسیلۀ سنجندۀ TM می‌شود به تطابق نداشتن آشکارسازها، واسنجی نامناسب آشکارسازها و یا فرسایش آنها در طول زمان اشاره کرد. با توجه به اینکه سنجندۀ TM از تکنیک تصویربرداری ویسک‌بروم استفاده می‌کند، این نوارشدگی‌ها در تصاویر به‌صورت افقی دیده می‌شوند. نوفۀ نواری در تصاویر اخذشده در باند 4 از سطوح تاریک مانند دریا که در سطح یک پیش‌پردازش شده‌اند، رخ‌نمون بیشتری دارد. این نوع نوفه موجب بروز خطا در برخی اعمال مانند تصحیحات جوی بااستفاده از پیکسل‌های تاریک و دشوار شدن استخراج اطلاعات از تصاویر می‌شود. در این پژوهش، برای اصلاح نوفۀ نواری سنجندۀ TM، پس از شناسایی آشکارسازهای نوفه‌ای، روش‌های میانه (MM)، تطبیق ممان‌های مکانی اصلاح‌شده (MSMM) و پالایش تصویر در حوزۀ فرکانس و مکان (IFFD & IFSD) پیشنهاد شده است. برای بررسی نتایج حاصل، از برخی کمیت‌های آماری همچون میانگین و انحراف‌ معیار و نیز، نمودار فراوانی و طیف فوریۀ تصاویر پیش و پس از اصلاح استفاده شده است. انحراف معیار در تصویر اولیه برابر با 56/1 است که پس از اصلاح تصویر، مقدارهای این کمیت برای روش‌های MM، MSMM، IFFD و IFSD به‌ترتیب برابر با 36/1، 42/1، 31/1و 26/1 است. کاهش به‌وجودآمده در انحراف معیار پس از حذف نوف، نواری، بهبود تصاویر را نشان می‌دهد. برای مقایسۀ این روش‌ها با یکدیگر و با کارهای دیگران، از MSE، RMSE و PSNR و همچنین، داده‌های شبیه‌سازی‌شده برای نوفۀ نواری متناوب استفاده شده است. مقدارهای به‌دست‌آمده PSNR برای روش‌های MM، MSMM، IFSD و IFFD به‌ترتیب برابر با 66/54، 14/51، 47/48و 65/45 دسی‌بل است. در این میان، بیشترین میزان PSNR و به‌تبع آن، کمترین میزان MSE مربوط به روش MM و MSMM بود که نشان از دقت بیشتر این روش‌ها درمقایسه با پالایه‌های حوزۀ فرکانس و مکان دارد.

واژگان کلیدی


نوفۀ متناوب، واسنجی نسبی، پالایش تصویر، سنجش از دور

تمام متن:

PDF

منابع و مآخذ مقاله


Algazi, V.R, Ford, G.E, 1981, Radiometric Equalization of Nonperiodic Striping in Satellite Data, Computer Graphics And Image Processing. 16(3), 287 -295.

Bisun, D., McVicar, T.R, Van Niel, T.G., Jupp, D.L.B. & Pearlman, J.S, 2003, Preprocessing EO-1 Hyperion Hyperspectral Data to Support the Application of Agricultural Indexes, IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 6, pp. 1246 - 1259.

Lixin, S., Robert, N., Karl, S. & White, H.P., 2008, Automatic Destriping of Hyperion Imagery Based on Spectral Moment Matching, Canadian journal of Remote Sensing, Vol. 34, pp. 68-81.

Mobasheri, M.R. & zendehbad, S.A., 2013, Diagnosis and Repair of Random Noise in the Sensors CHRIS-PROBA, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XL-1/W3.

Markham, B.L., Chander, G. & Barsi, J.A., 2007, Revised Landsat-5 Thematic Mapper Radiometric Calibration, IEEE Transactions on Geoscience and Remote Sensing, Vol. 4, No. 3, pp. 490-494.

Pande-Chhetri, R. & Abd-Elrahman, A., 2011, De-Striping Hyperspectral Imagery Using Wavelet Transform and Adaptive Frequency Domain Filtering, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 66, pp. 620–636.

Tsai, F. & Chen, W., 2008, Striping Noise Detection and Correction of Remote Sensing Images, IEEE Transactions On Geoscience And Remote Sensing, Vol. 46, No. 12, pp. 4122 - 4131.

Srinivasan, R., 1986, Noise Removal by the Karhunen -Loeve Transform, Proceeding of International Society for Photogrammetry and Remote Sensing Symposium, Vol. 26 -2, pp. 263 -273.

Srinivasan, R., Cannon, M. & James, W., 1988, Landsat Data Destriping Using Power Spectra Filtering, SPIE-Optical Engineering, 27(11), 939 -943.

Zhang, M., Carder, K., Muller-Karger, F.E., Lee, Z. & Goldgof, D., 1999, Noise Reduction and Atmospheric Correction for Coastal Applications of Landsat Thematic Mapper Imagery, Remote Sensing of Environment, Vol. 70, pp. 167–180.

USGS, 2013, Landsat—A Global Land-Imaging Mission.

وبگاه USGS، 2014:

https://landsat.usgs.gov/science_L4-5_Cal_Notices.php


ارجاعات

  • در حال حاضر ارجاعی نیست.