نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشیار گروه جغرافیای طبیعی، دانشکدۀ علوم زمین، دانشگاه شهید بهشتی

2 استادیار گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکدۀ علوم زمین، دانشگاه شهید بهشتی

چکیده

در مسائل هیدرولوژیک وکشاورزی، ظرفیت آب قابل دسترس خاک متغیری مهم انگاشته می‌شود و برآورد این متغیر در مقیاس حوضۀ آبخیز از اصولی است که در نظر گرفته می‌شود. به‌دلیل ناپیوستگی در برداشت نمونه‌ها و نداشتن دسترسی به اطلاعات کافی در ارتباط با شناخت ویژگی‌های مناطق و نیز، صرف هزینه و زمان زیاد جهت برآورد آب قابل دسترس خاک و تغییرات مکانی آن، استفاده از تصاویر ماهواره‌ای به‌صرفه است. بنابراین، توسعه و بسط روش ساده و مدل‌های متکی بر اصول سنجش از دوری، به‌منظور برآورد ظرفیت آب قابل دسترس خاک، ضروری است. به‌طورکلی، مطالعات گذشته براساس پایش رطوبت خاک بوده و به دیگر توابع رطوبت خاک، همچون آب قابل دسترس کمتر پرداخته شده است. بر همین اساس، در این مطالعه تلاش بر برآورد یکی از توابع رطوبت خاک، با نام ظرفیت آب قابل دسترس خاک است. اصول نظری این تحقیق بر پایۀ ارتباط بین پوشش گیاهی و دمای سطحی زمین است و دلیل استفاده از دو شاخص یادشده طرح آزمایش و بررسی کارآیی شاخصی مستقل از شاخص‌های فیزیکی خاک است که به اندازه‌گیری ظرفیت آب قابل دسترس در خاک منجر شود. در این مطالعه، مدلی ترکیبی و منتج‌ از دو شاخص دمای سطح زمین و پوشش گیاهی نرمال‌شده به‌منظور برآورد آب قابل دسترس خاک در حوضۀ آبخیز هیو واقع در منطقۀ هشتگرد ما ارائه‌شده است. به‌منظور کنترل زمینی، پنجاه نمونۀ خاک با توزیع سیستماتیک برداشت شد.80% نمونه‌ها‌ی برداشت‌شده برای برازش مدل ترکیبی دمای سطح زمین و شاخص نرمال‌شدۀ پوشش گیاهی، و 20% نمونه‎‌ها برای اعتبارسنجی مدل به‌کار رفت. اعتبارسنجی رگرسیون چندمتغیره با ضریب تبیین 85/0، در سطح معناداری 01/0 و جذر میانگین مربعات خطا 6/2 را نشان می‌دهد. بر این اساس، کارآیی دو شاخص استفاده‌شده برای اندازه‌گیری آب قابل دسترس خاک قابل تأیید است.

کلیدواژه‌ها

عنوان مقاله [English]

Estimating the Capacity of Water Available to Soil via Using Satellite Images and Earth Control Data in Mountainous Regions

نویسندگان [English]

  • K Nosrati 1
  • S.H Pourali 2

1 Associate Prof., Dep. of Physical Geography, Faculty of Earth Sciences, Shahid Beheshti University

2 Assistant prof., Dep. of Remote Sensing and Geographical Information System, Faculty of Earth Sciences, Shahid Beheshti University

چکیده [English]

With regard to the hydrologic and agricultural issues, the capacity of water available to soil is considered to be an important variable and its estimation in catchment basin is deemed a principle. Due to the lack of consistency in taking the samples, unavailability of sufficient data for recognizing the characteristics of a region and also it is being time-consuming and costly to estimate the water available to soil and its space changes, the use of satellite images is more feasible and less costly. That being said, it is of the essence to develop simple method and models for estimating the capacity of water available to soil from distance. The theoretical background of this research is based on the relationship between vegetation and the temperature of the surface of the earth in estimating the capacity of water available to soil. In the study, in order to estimate the capacity of water available to soil in catchment basin in Hiv located at Hashtgerd, Landsat 7 satellite was used. For the earth control, 50 samples of soil were taken which were distributed in systematic ways.  80 percent of the taken samples were used for combined-model process of the earth surface, using a normalized index for vegetation. Also, 20 percent of the samples were used for the validation of the model. The validity, using multivariate regression with a coefficient determination of 0/85 was significant at 0/01 and the square mean error was 2/6.

کلیدواژه‌ها [English]

  • Multivariate Regression
  • Capacity of the Available Water
  • Combined Model the Earth Surface Temperature
  • Normalized Index of Vegetation
  1. علوی‌پناه، س.ک.، 1382، کاربرد سنجش از دور در علوم زمین (علوم خاک)، مؤسسۀ انتشارات و چاپ دانشگاه تهران.
  2. میذر، پ.م.، 1377، پردازش کامپیوتری تصاویر سنجش از دور، ترجمۀ محمد نجفی دیسفانی، تهران، انتشارات سمت.
  3. Brocca, L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W., Dorigo, W., Matgen, P., Martinez-Fernandez, J., Llorens, P., Latron, J., Martin, C. & Bittelli, M., 2011. Soil Moisture Estimation through ASCAT and AMSR-E Sensors: An intercomparison and Validation Study Across Europe, Remote Sensing of Environment J., Vol. 115, PP.3390-3408.
  4. Carlson, T.N. & Ripley, D.A., 1997, On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index, Remote Sensing of Environment, Vol. 62, Issue 3, PP. 241- 252.
  5. Engman, E.T., 1990, Progress in Microwave Remote Sensing of Soil Moisture, Canadian Journal of Remote Sensing, Vol.16, No. 3, PP. 6-14.
  6. Henricksen, B.L. & Durking, J.W., 1986, Growing Period and Drought Early Warning in African Using Satellite Data, International Journal of Remote Sensing, Vol. 7, Issue 11, PP. 1583-1608.
  7. Jimenez-Muňoz, J.C. & Sobrino, J.A., 2003, A generalized single-channel method for retrieving land surface temperature from remote sensing data, Journal of Geophysical Research, Vol. 108, Issue D22, PP. 4688-4694.
  8. Karnieli, A., Agam, N., Pinker, R.T., Anderson, M., Imhoff, M.L., Gutman, G.G., Panov, N. & Goldberg, A., 2010, Use of NDVI and Land Surface Temperature for Drought Assessment, Merits and Limitations, J. Climate, Vol. 23, No. 3, PP. 618-633.
  9. Keshavarz, M.R., Vazifedoust, M. & Alizadeh, A., 2001, Development of Soil Wetness Deficit Index (SWDI) Using MODIS Satellite Data, Iranian Journal of lrrigation and Drainage, Vol. 4, No. 3, PP. 465-477.
  10. Lievens, H. and Verhoest, N.E.C., 2012, Spatial and Temporal Soil Moisture Estimation from
  11. RADARSAT-2 Imagery over Flevoland, The Netherlands, Journal of Hydrology, Vol. 456, PP. 44-56.
  12. Mallick, K., Bhattacharya, B.K., & Patel, N.K., 2009, Estimating Volumetric Surface Moisture Content for Cropped Soils Using a Soil Wetness Index Based on Surface Temperature and NDVI, Agricultural and Forest Meteorology, Vol. 149, No. 8, PP. 1327-1342.
  13. Marshall, G.S., 2005, Drought Detection And Quantification Using Field-Based Spectral Measurements Of Vegetation In Semi-Arid Regions, New Mexico Institute of Mining and Technology Department of Earth and Environmental Science.
  14. Mattia, F., Satalino, G., Pauwels, V.R.N. & Loew, A., 2008, Soil Moisture Retrieval through a Merging of Multi-Temporal L-Band SAR Data and Hydrologic Modeling, Hydrology and Earth System Sciences, Vol. 13, Issue 3, PP. 343-356.
  15. _______, 2009, Soil Moisture Retrieval through a Merging of Multi-Temporal L-Band SAR Data and Hydrologic Modeling, Hydrology and Earth System Sciences, Vol. 13, issue 3, PP. 343-356.
  16. Moran, M.S., Clarke, T.R., lnoue, Y. & Vidal, A.,1994, Estimating Crop Water Deficit Using the Relation between Surface-Air Temperature and Spectral Vegetation Index, Remote SENS Environ, Vol. 49, No. 3, PP. 246-263.
  17. Moran, M.S., Peters-Lidard, C.D., Watts, J.M. & McElroy, S., 2004, Estimating Soil Moisture at the Watershed Scale with Satellite-Based Radar and Land Surface Models, Can. J. Remote Sens, Vol 30, Issue 5, PP. 805-826.
  18. Nemani, R.R., Running, S.W., Pielke, R.A. & Chase, T.N., 1993, Global Vegetation Cover Changes from Coarse Resolution Satellite Data, Journal of Geophysical Research, Vol. 101, Issue D3, PP. 7157-7162.
  19. Ngie, A., Abutaleb, K., Ahmed, F., Taiwo, O.J., Darwish, A.A. & Ahmed, M., 2015, An Estimation of Land Surface Temperatures from Landsat ETM+ images for Durban, South Africa, GeoTechRwanda, Kigali, 18-20 November.
  20. Peters, A.J., Rundquist, D.C. & Wilhite, D.A., 1991, Satellite Detection of the Geographic Core of the 1988 Nebraska Drought, Agricultural and Forest Meteorology, Vol. 57, PP. 1-3.
  21. Qin, Z., Karnieli, A. & Berliner, P., 2001, A Mono-Window Algorithm for Retrieving Land Surface Temperature from Landsat TM Data and its Application to the Israel-Egypt Border Region, International Journal of Remote Sensing, Vol. 22, Issue 18, PP. 3719-3746.
  22. Sandholt, I., Rasmussen, k. & Andersen, J., 2002, A Simple Interpretation of the Surface Temperature/Vegetation Index Space for Assessment of Surface Moisture Status, Remote sensing of Environment, Vol. 79, No. 2-3, PP. 213-224.
  23. Sanli, F.B., Kurucu, Y., Esetlili, M.T. & Abdikana, S., 2008, Soil Moisture Estimation from RADARSAT-1, ASAR and PALSAR Data in Agricultural Fiels of Menemen Plain of Western Turkey, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Part B7, Beijing.
  24. Simpson, J. J. and Still, J.R., 1998, A Procedure for the Detection and Removal of Cloud Shadow from AVHRR Data over Land, IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 3, PP. 8880-897.
  25. Sobrino, J., Li, Z.L., Stoll, M.P. & Becker, F., 1996, Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ASTER data, International Journal of Remote Sensing, Vol. 17, No. 11, PP. 2089-2114.
  26. Stisen, S., Sandholt, I., Nørgaard, A., Fensholt, R. & Jensen, K.H., 2008, Combining the Method with Thermal Inertia to Estimate Regional Evapotranspiration-Applied to MSG-SEVIRI Data in the Senegal River Basin, Remote Sens. Environ., Vol. 112, Issue 3, 1242-1255.
  27. Tucker, C.J.,1996, History of the Use of AVHRR Data for Land Applications, In: G.D’Souza , A.S. Selward and J-P. Malin Greau, Editors, Advances in use of NOAA AVHRR data for land applications, Kluwer Academic poblishers, pordrecht.
  28. Verstraeten, W.W., 2006, Integration of Remotely Sensed Hydrological Data into an Ecosystem Carbon Flux Model, PhD thesis, Katholieke University the Leuven.
  29. Walker, J.P., 1999, Estimation Soil Moisture Profiles Dynamics from near Surface soil Moisture Measurements and Standard Meteorological, data.ph. Dissertation the university of Newcastle, Australia.
  30. ______ & Houser, P.R., 2004, Requirements of a Global near-Surface Soil Moisture Satellite Mission: Accuracy, Repeat Time, and Spatial Resolution, Advances in Water Resources, Vol. 27, Issue 8, PP. 785-801.
  31. Wang, K.C., Li, Z.Q. & Cribb, M.M., 2006, Estimation of Evaporative Fraction from a Combination of Day and Night Land Surface Temperatures and NDVI: A New Method to Determine Priestley-Taylor Parameter, Remote Sens. Environ, Vol. 102, PP. 293-305.
  32. Weng, Q., Lu, D. & Schubring, J., 2004, Estimation of Land Surface Temperature-Vegetation Abundance Relationship for Urban Heat Island Studies, Remote Sensing Environ., Vol. 89, 4, PP. 467-483.
  33. Zhang, D., Tang, R., Zhao, W., Tang, B., Wu, H., Shao, K. & Li, Zh.L., 2014, Surface Soil Water Content Estimation from Thermal Remote Sensing based on the Temporal Variation of Land Surface Temperature, Remote Sensing, Vol. 6, No. 4, PP. 3170-3187.