نوع مقاله : علمی - پژوهشی

نویسندگان

1 عضو هیات علمی دانشگاه ارومیه

2 دانشگاه ارومیه

چکیده

روش­های اصلاح مدل رقومی ارتفاعی (DEM)، برای بهبود کیفیت آن و به‌منظور استفاده در شبیه‌سازی و مدل‌سازی هیدرولوژیک سلولی مورد استفاده قرار می­گیرد. در این مقاله، روش­های اصلاح DEM و تهیه DEM هیدرولوژیک با استفاده از الحاقیه ArcHydro10.2 بررسی و در 53 زیر‌حوضه کرخه مورد ارزیابی قرار گرفت و یکی از کاربردهای آن در برآورد "رواناب پیوسته" پیاده شد. اطلاعات آبدهی در محل ایستگاه‌های هیدرومتری به‌صورت نقطه‌ای قابل‌دسترس است. برای تعیین مقدار آبدهی، به‌صورت پیوسته و در هر نقطه از مسیر و سرشاخه‌های رودخانه، به تجمعی کردن نقشه رواناب نیاز داریم. مدل جهات هشتگانه ریزش هر نقطه (D8)، یک مدل پایه برای استخراج شبکه رودخانه از روی سلول‌های تجمعی شده DEM است. با این روش، جهت جریان هر سلول به یکی از هشت سلول مجاور در  DEM تعیین می‌شود. در نقشه DEM هیدرولوژیک، سلول‌های تجمعی در مسیر رودخانه به‌صورت پیوسته و افزایشی قرار می‌گیرند. با استفاده از الگوریتم Agree و با آزمون‌وخطا، مدل رقومی ارتفاعی اصلاح شده و مساحت حاصل از تجمع سلول‌های بالادست هر سلول با مقادیر مساحت وکتوری زیرحوضه‌ها مورد مقایسه قرار گرفت، به‌طوری‌که ضریب همبستگی برابر 9975/0 بدست آمد. بعد از تولید نقشه رواناب، در نهایت نقشه جریان تجمعی هر نقطه از مسیر این رودخانه، در سلول‌های 200 متری تهیه و نقشه پیوسته جریان ارائه شد. نتایج حاکی است که خطای دبی حاصل از این روش و مقادیر مشاهداتی در 53 ایستگاه هیدرومتری بین  28/0% تا 1/3% است.

کلیدواژه‌ها

عنوان مقاله [English]

Preparing hydrologic DEM and its application to produce a accumulated flow map (A Case study at Upstream of Karkheh dam)

نویسندگان [English]

  • Behzad Hessari 1
  • Sajjad Karimzadgan 2

1 Assistant Professor, Department of Water Engineering, Faculty of Agriculture and Urmia Lake research institute, University of Urmia, Urmia, Iran

2 University of Urmia, Urmia, Iran

چکیده [English]

Digital elevation model (DEM) reconditioning methods are being used to improve its quality to be used in simulation and cellular hydrological modeling. In this paper , methods of improving DEM and creating “Hydrologic DEM” with using the ArcHydro10.2 extention were studied and also evaluated in 53 subbasins of Karkheh river basin(KRB)  and one of its applications in “accumulation runoff map” was implemented .Streamflow information is available at hydrometric stations as points but for determining the amount of river discharge continually at any point along the river and branches, it is needed to accumulate the runoff map. The 8 direction method (D8) is the basic model for river network delineation from DEM accumulated cells. In this algorithm, the flow of each cell pours to one of the eight adjacent cells in the "hydrologic DEM ". In hydrologic DEM the accumulated cells in the river line forward to the downstream increase continuously. With "Agree algorithm"  and with trial and error the DEM improved and the upstream area of accumulation cells, have been compared with a vector area in each subbasin which correlation coefficient was 0.9975. After preparing runoff map of the basin, accumulation flow(accumulated runoff map) using a weighted cumulative flow function was created with 200m cell size then the continuous flow map was presented. The results indicate that the error between estimated discharge from accumulated flow map with observed discharge in 53 subbasins varies  between 0.28 to 3.1 percent.

کلیدواژه‌ها [English]

  • cellular hydrology
  • hydrological DEM
  • runoff map
  • continuous flow map
  • Karkheh river basin
  1. حصاری ب.، 1392، بررسی اثرات هیدرولوژیکی بالادستی و پایین‌دستی توسعه آبیاری تکمیلی مناطق دیم در حوضه کرخه، پایان‌نامه دکتری، دانشگاه اهواز، دانشکده مهندسی آب، گروه هیدرولوژی، 222 ص.
  2. حصاری ب.، ک. خلیلی، ا. قهرمانی، ع. حیدری، ر. غنی پور، 1383، تعیین بیلان آبی استان آذربایجان غربی با استفاده از تکنیک GIS، سازمان آب منطقه‌ای آذربایجان غربی و سازمان مدیریت و برنامه‌ریزی استان، 4 جلد، شماره 406/22226.
  3. حصاری ب.، ک. خلیلی، ا. قهرمانی، 1385، تهیه نقشه هم جریان استان آذربایجان غربی با استفاده از GIS، اولین کنفرانس منابع آب ایران، دانشگاه تهران، تهران.
  4. شربت زاده و.، 1390، برآورد فرسایش و رسوب زایی حوضه آبریز نازلو چای به روش MPSIAC در GIS، پایان‌نامه کارشناسی ارشد، گروه زمین‌شناسی، دانشگاه بوعلی سینا، 130 ص.
  5. متکان ع. ا، ع. ر. شکیبا، د. عاشور لو، 1386، مقایسه تطبیقی روش‌های حذف خطاهای مدل ارتفاعی رقومی (DEM) نمونه موردی، حوضه آبریز اکباتان، مجله علوم محیط زیستی، سال چهارم، شماره سوم، دانشگاه شهید بهشتی، تهران.
  6. Akmansoy, S. & McKinney, D.C., 1998, Aral Sea water rights ,Doctoral dissertation, Center for Research in Water Resources, University of Texas at Austin.
  7. Callow, J., Van Niel, K. & Boggs, G., 2007, How does modifying a DEM to reflect known hydrology affect subsequent terrain analysis. Journal of Hydrology, 332(1-2), pp.30-39.
  8. Cedrerstrand, J.R. & Reen, A.,1996, Watershed boundaries and DEM of Oklahama – AWRE – Http://www.awra.org.
  9. ESRI, 2016, ArcMap 10.4 Help, ESRI.INC, Available online at: http://doc.arcgis.com/en/arcgis-online/analyze/create-watersheds.htm, [Accessed 25, April 2016].
  10. Hellweger, F., 1997, Agree-DEM surface reconditioning system, Center for Research in Water Resources
  11. Hydrology.usu.edu, 2017, TARDEM, A suite of programs for the Analysis of Digital Elevation Data. [online] Available at: http://hydrology.usu.edu/tardem/tardem4.0/ [Accessed 17 Jul. 2017].
  12. Maidment, D.R., 1996, GIS and hydrologic modeling-an assessment of progress, In Third International Conference on GIS and Environmental Modeling, Santa Fe, New Mexico.
  13. Melancon, P.A., Maidment, D.R. & Barrett, M.E., 1999, A GIS based watershed analysis system for Tillamook Bay, Oregon (Doctoral dissertation, Center for Research in Water Resources, University of Texas at Austin).
  14. Merwade, V., 2018, Building ArcHydro using National Hydrography Dataset, [online] Available at: http://web.ics.purdue.edu/~vmerwade/tutorial.html, Accessed 05, April 2016.
  15. Munn D., 2003, Non-point Source Pollution: Prediction and Analysis in ArcView 3.0, Texas A&M University - Department of Civil Engineering. Available online at: https://ceprofs.civil.tamu.edu/folivera/TxAgGIS/Spring2003/Munn/Munn.htm, Accessed 05, April 2016.
  16. Olivera, F. & Maidment, D.R., 1996, Runoff computation using spatially distributed terrain parameters. In North American Water and Environment Congress & Destructive Water (pp. 3212-3217). ASCE.
  17. Reed, S., Maidment, D. & Patoux, J., 1994, Spatial Water Balance in Texas, Texas Water Resources Institute. Center for Research in Water Resources University of Texas , Austin.
  18. Resources.arcgis.com, 2017, Surface Water | ArcGIS Resource Center, [Online] Available at: http://resources.arcgis.com/en/communities/hydro/01vn00000010000000.htm [Accessed 5 Aug. 2017].
  19. Stephen, M., Carpenedo, Kramer, E., Lee, J. & Samples, K., 2007, Using GIS to model the effects of potential wetland mitigation sites on water quality in Gorgia, Proceedings of the 2007 Georgia Water Resources Conference, University of Georgia. Georgia Institute of Technology.
  20. Srtm.csi.cgiar.org., 2017, CGIAR-CSI SRTM 90m DEM Digital Elevation Database, [Online] Available at: http://srtm.csi.cgiar.org/SRTM_FAQ.asp [Accessed 17 Jul. 2017].
  21. Tarboton, D.G., 1989, The analysis of river basins and channel networks using digital terrain data, Doctoral dissertation, Massachusetts Institute of Technology.
  22. Tarboton, D.G., 1997, A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water resources research, 33(2), pp.309-319.
  23. Tarboton, D.G., Bras, R.L. & Rodriguez‐Iturbe, I., 1991, On the extraction of channel networks from digital elevation data, Hydrological processes, 5(1), pp.81-100.
  24. Verdin, K.L. & Greenlee, S.K., 2003, July, Continuous Basin Characterization using EDNA, In 23rd Annual ESRI International User Conference.
  25. Wilson, J.P., Mitasova, H. & Wright, D.J., 2000, Water resource applications of geographic information systems, Urisa Journal, 12(2), pp.61-79.