نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد رشتة مهندسی نقشه‌برداری گرایش سنجش از دور، دانشگاه صنعتی خواجه نصیرالدین طوسی

2 دانشیار گروه فتوگرامتری و سنجش از دور دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده

رطوبت خاک در فرایندهای تعاملی بین جو و زمین و تغییرات جهانی اقلیم نقش مهمی ایفا می‌کند. در سه دهة گذشته، محققان بسیاری به تعیین رطوبت خاک، با استفاده از داده‌های سنجش از دوری، توجه داشته‌اند. روش‌های مثلثی و ذوزنقه‌ای از روش‌های سنجش از دوری‌اند که با ترکیب داده‌های حرارتی و مرئی، شاخصی برای میزان رطوبت را تعیین می‌کنند. یکی از مهم‌ترین موارد تأثیرگذار در دقت این روش‌ها، ‌دقت تعیین لبه‌های خشک و مرطوب در نمودار پراکندگی دما/ پوشش گیاهی است. درنتیجه، ناتوانی در تعیین لبه‌های مذکور، در برخی روزها و شرایط، امکان استفاده از این روش‌ها را محدود می‌کند. هدف این مطالعه مطرح‌کردن روشی برای تعیین دقیق لبه‌های خشک و اشباع، در تمامی روزها و شرایط، با استفاده از تلفیق داده‌های سری زمانی دما و پوشش گیاهی است. به‌منظور تحقق این هدف، خطوط هم‌رطوبت به‌منزلة خطوطی معرفی می‌شوند که رطوبت در امتداد آن‌ها مقدار ثابتی است و برای تعیین لبه‌های خشک و مرطوب در هر روز به‌کار رفته‌اند. شاخص میزان رطوبت خاک پیشنهادی برای 28 روز در سال 2014، در منطقه‌ای از شهر مونیتوبا در کشور کانادا، با استفاده از ویژگی‌های دو خط انتخاب‌شده از میان خطوط هم‌رطوبت به‌دست‌آمده ازطریق داده‌های دمای سطح، دمای هوا و شاخص پوشش گیاهی سنجندة MODIS، محاسبه و با استفاده از داده‌های زمینی ایستگاه‌های رطوبت‌سنجی شبکة RISMA واقع در این منطقه، ارزیابی شده است. در تمامی 28 روز، تصویر شاخص پیشنهادی که معرف میزان رطوبت خاک است، به‌منزلة خروجی روش پیشنهادی به‌دست آمد. ضریب همبستگی شاخص به‌دست‌آمده با میزان رطوبت خاک در روزهای بدون پوشش گیاهی به 92/0 رسیده و این مقدار ضریب همبستگی، در روزهای با پوشش گیاهی انبوه، کمتر بوده است.

کلیدواژه‌ها

عنوان مقاله [English]

Development of Temperature/ Vegetation Indexes for Estimating Soil Moisture Content Using Co- Moisture Lines Extracted from a One- Year Temperature/ Vegetation Scatter Plot of MODIS Data

نویسندگان [English]

  • F Mohseni 1
  • M Mokhtarzadeh 2

1 M.Sc. Student of K.N. Toosi University of Technology, Dep. of Remote Sensing

2 Associate Prof. of K.N. Toosi University of Technology, Dep. of Remote Sensing

چکیده [English]

Soil moisture plays an important role in interactive processes between earth and atmosphere and global climate changes. In recent decades, there has been a great research interest to determine soil moisture from remote sensing methods. Triangular or trapezoidal methods are the most common remote sensing methods that apply the combination of thermal and optical satellite images to estimate soil moisture content. The accuracy of methods governed by the accuracy of saturated and dry edges that define from vegetation/ temperature scatter plot. A main limitation of these methods arose in some days or in some vegetation condition that dry and wet edges cannot be defined correctly. This concern is addressed in this paper by using the temperature and vegetation information during one year interval to form the temperature-vegetation scatter plot, saturated edge and dry edge exactly. The main contribution of the paper is, however, the introduction of co­-moisture lines in the one-year scatter plot. These lines are later applied to define the wet and dry edges of each individual day which are taken as the two closest co-moisture lines that contain all corresponding pixels of that day. The soil moisture index as a parameter dependent to evaporation efficiency is finally estimated from the slope and intercept of these two co-moisture lines. The proposed soil moisture index calculated from co-moisture was implemented and validated in Manitoba, Canada area while MODIS satellite images, taken in 28 cloudless days of year 2014, were used as the input data. The correlation between ground soil moisture data and proposed soil moisture index was estimated. Correlation of 0.92 was achieved for low vegetation days and lower in days with higher vegetation densities.

کلیدواژه‌ها [English]

  • Soil moisture content
  • remote sensing
  • Triangular and trapezoidal methods
  • Dry and wet edges in scatter plot
  • Co-moisture lines
  1. Amani, M. & Mobasheri, M.R., 2015, A Parametric Method for Estimation of Leaf Area Index Using Landsat ETM+ Data, GIScience & Remote Sensing, 52(4), PP. 478-497.
  2. Amani, M., Parsian, S., MirMazloumi, S.M
  3. . & Aieneh, O., 2016, Two New Soil Moisture Indices Based on the NIR-Red Triangle Space of Landsat-8 Data, International Journal of Applied Earth Observation and Geoinformation, 50, PP. 176-186.
  4. Bastiaanssen, W.G.M., 2000, SEBAL-Based Sensible and Latent Heat Fluxes in the Irrigated Gediz Basin, Turkey, Journal of Hydrology, 229(1), PP. 87-100.
  5. Bowers, S.A. & Smith, S.J., 1972, Spectrophotometric Determination of Soil Water Content, Soil Science Society of America Journal, 36(6), PP. 978-980.
  6. Carlson, T., 2007, An Overview of the "Triangle Method" for Estimating Surface Evapotranspiration and Soil Moisture from Satellite Imagery, Sensors, 7(8), PP. 1612-1629.
  7. Carlson, T.N., Capehart, W.J. & Gillies, R.R., 1995, A New Look at the Simplified Method for Remote Sensing of Daily Evapotranspiration, Remote Sensing of Environment, 54(2), PP. 161-167.
  8. Djamai, N., Magagi, R., Goïta, K., Merlin, O., Kerr, Y. & Roy, A., 2016, A Combination of DISPATCH Downscaling Algorithm with CLASS Land Surface Scheme for Soil Moisture Estimation at Fine Scale During Cloudy Days, Remote Sensing of Environment, 184, PP. 1-14.
  9. Gillies, R.R., Kustas, W.P. & Humes, K.S., 1997, A Verification of the 'Triangle' Method for Obtaining Surface Soil Water Content and Energy Fluxes from Remote Measurements of the Normalized Difference Vegetation Index (NDVI) and Surface E, International Journal of Remote Sensing, 18(15), PP. 3145-3166.
  10. Hosseini, M. & McNairn, H., 2017, Using Multi-Polarization C-and L-Band Synthetic Aperture Radar to Estimate Biomass and Soil Moisture of Wheat Fields, International Journal of Applied Earth Observation and Geoinformation, 58, PP. 50-64.
  11. Leng, P., Song, X., Li, Z.L., Wang, Y. & Wang, R., 2015, Toward the Estimation of Surface Soil Moisture Content Using Geostationary Satellite Data over Sparsely Vegetated Area, Remote Sensing, 7(4), PP. 4112-4138.
  12. Liu, C., Zhang, X. & Zhang, Y., 2002, Determination of Daily Evaporation and Evapotranspiration of Winter Wheat and Maize by Large-Scale Weighing Lysimeter and Micro-Lysimeter, Agricultural and Forest Meteorology, 111(2), PP. 109-120.
  13. Lobell, D.B. & Asner, G.P., 2002, Moisture Effects on Soil Reflectance, Soil Science Society of America Journal, 66(3), PP. 722-727.
  14. Maki, M., Ishiahra, M. & Tamura, M., 2004, Estimation of Leaf Water Status to Monitor the Risk of Forest Fires by Using Remotely Sensed Data, Remote Sensing of Environment, 90(4), PP. 441-450.
  15. McNairn, H., Jackson, T.J., Wiseman, G., Belair, S., Berg, A., Bullock, P., Colliander, A., Cosh, M.H., Kim, S.B., Magagi, R. & Moghaddam, M., 2015, The Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12): Prelaunch Calibration and Validation of the SMAP Soil Moisture Algorithms, IEEE Transactions on Geoscience and Remote Sensing, 53(5), PP. 2784-2801.
  16. Merlin, O., Walker, J.P., Chehbouni, A. & Kerr, Y., 2008, Towards Deterministic Downscaling of SMOS Soil Moisture Using MODIS Derived Soil Evaporative Efficiency, Remote Sensing of Environment, 112(10), PP. 3935-3946.
  17. Merlin, O., Rudiger, C., Al Bitar, A., Richaame, P., Walker, J.P. and Kery, Y. H., 2012. Disaggregation of smos soil mouisture in southeastern Australia. IEEE Transactions on Geoscience and Remote sensing, 50(5), PP 1556-1571.
  18. Mobasheri, M.R. & Amani, M., 2016, Soil Moisture Content Assessment Based on Landsat 8 Red, Near-Infrared, and Thermal Channels, Journal of Applied Remote Sensing, 10(2), PP. 026011-026011.
  19. Nemani, R., Pierce, L., Running, S. & Goward, S., 1993, Developing Satellite-Derived Estimates of Surface Moisture Status, Journal of Applied Meteorology, 32(3), PP. 548-557.
  20. Nichols, S., Zhang, Y. & Ahmad, A., 2011, Review and Evaluation of Remote Sensing Methods for Soil-Moisture Estimation, Journal of Photonics for Energy, PP. 028001-028001.
  21. Patel, N.R., Anapashsha, R., Kumar, S., Saha, S.K. & Dadhwal, V.K., 2009, Assessing Potential of MODIS Derived Temperature/Vegetation Condition Index (TVDI) to Infer Soil Moisture Status, International Journal of Remote Sensing, 30(1), PP. 23-39.
  22. Petropoulos, G., Carlson, T.N., Wooster, M.J. & Islam, S., 2009, A Review of Ts/VI Remote Sensing Based Methods for the Retrieval of Land Surface Energy Fluxes and Soil Surface Moisture, Progress in Physical Geography, 33(2), PP. 224-250.
  23. Piles, M., Camps, A., Vall-Llossera, M., Corbella, I., Panciera, R., Rudiger, C., Kerr, Y.H. & Walker, J., 2011, Downscaling SMOS-Derived Soil Moisture Using MODIS Visible/Infrared Data, IEEE Transactions on Geoscience and Remote Sensing, 49(9), PP. 3156-3166.
  24. Piles, M., Camps, A., Vall-Llossera, M., Sanchez, N., Martinez-Fernandez, J., Monerris, A., Baroncini-Turricchia, G., Perez-Gutierrez, C., Aguasca, A., Acevo, R. & Bosch-LMs, X., 2010, Soil Moisture Downscaling Activities at the REMEDHUS Cal/Val Site and its Application to SMOS, In Microwave Radiometry and Remote Sensing of the Environment (MicroRad), 2010 11th March, Specialist Meeting on (PP. 17-21). IEEE.
  25. Rahimzadeh-Bajgiran, P., Berg, A.A., Champagne, C. & Omasa, K., 2013, Estimation of Soil Moisture Using Optical/Thermal Infrared Remote Sensing in the Canadian Prairies, ISPRS Journal of Photogrammetry and Remote Sensing, 83, PP. 94-103.
  26. Rahimzadeh-Bajgiran, P., Omasa, K. & Shimizu, Y., 2012, Comparative Evaluation of the Vegetation Dryness Index (VDI), the Temperature Vegetation Dryness Index (TVDI) and the Improved TVDI (iTVDI) for Water Stress Detection in Semi-Arid Regions of Iran, ISPRS Journal of Photogrammetry and Remote Sensing, 68, PP. 1-12.
  27. Rowlandson, T.L., Berg, A.A., Bullock, P.R., Ojo, E.R., McNairn, H., Wiseman, G. & Cosh, M.H., 2013, Evaluation of Several Calibration Procedures for a Portable Soil Moisture Sensor, Journal of hydrology, 498, PP. 335-344.
  28. Sadeghi, M., Jones, S.B. & Philpot, W.D., 2015, A Linear Physically-Based Model for Remote Sensing of Soil Moisture Using Short Wave Infrared Bands, Remote Sensing of Environment, 164, PP. 66-76.
  29. Sanchez-Ruiz, S., Piles, M., Sanchez, N., Martinez-Fernandez, J., Vall-llossera, M. & Camps, A., 2014, Combining SMOS with Visible and Near/Shortwave/Thermal Infrared Satellite Data for High Resolution Soil Moisture Estimates, Journal of Hydrology, 516, PP. 273-283.
  30. Sandholt, I., Rasmussen, K. & Andersen, J., 2002, A Simple Interpretation of the Surface Temperature/Vegetation Index Space for Assessment of Surface Moisture Status, Remote Sensing of Environment, 79(2), PP. 213-224.
  31. Stoner, E.R., Baumgardner, M.F., Weismiller, R.A., Biehl, L.L. & Robinson, B.F., 1980, Extension of Laboratory-Measured Soil Spectra to Field Conditions, Soil Science Society of America Journal, 44(3), PP. 572-574.
  32. Tramutoli, V., Claps, P., Marella, M., Pergola, N. & Sileo, C., 2000, Feasibility of Hydrological Application of Thermal Inertia from Remote Sensing, In 2nd Plinius Conference on Mediterranean Storms, Siena, Italy, October, (PP. 16-18).
  33. Verstraeten, W.W., Veroustraete, F., van der Sande, C.J., Grootaers, I. & Feyen, J., 2006, Soil Moisture Retrieval Using Thermal Inertia, Determined with Visible and Thermal Spaceborne Data, Validated for European Forests, Remote Sensing of Environment, 101(3), PP. 299-314.
  34. Walker, J. P., 1999. Estimating soil moisture profile dynamics frme near-surface soil moisture measurments and standard meteordogical data (Doctoral dissertation, university of Newcastle).
  35. Wang, C., Qi, S., Niu, Z. & Wang, J., 2004, Evaluating Soil Moisture Status in China Using the Temperature–Vegetation Dryness Index (TVDI), Canadian Journal of Remote Sensing, 30(5), PP. 671-679.
  36. Wang, L. & Qu, J.J., 2009, Satellite Remote Sensing Applications for Surface Soil Moisture Monitoring: A Review, Frontiers of Earth Science in China, 3(2), PP. 237-247.
  37. Wang, X., Xie, H., Guan, H. & Zhou, X., 2007, Different Responses of MODIS-Derived NDVI to Root-Zone Soil Moisture in Semi-Arid and Humid Regions, Journal of Hydrology, 340(1), PP. 12-24.
  38. Weidong, L., Baret, F., Xingfa, G., Qingxi, T., Lanfen, Z. & Bing, Z., 2002, Relating Soil Surface Moisture to Reflectance, Remote Sensing of Environment, 81(2), PP. 238-246.
  39. Weng, Q., 2009, Thermal Infrared Remote Sensing for Urban Climate and Environmental Studies: Methods, Applications, and Trends, ISPRS Journal of Photogrammetry and Remote Sensing, 64(4), PP. 335-344.
  40. Whiting, M.L., Li, L. & Ustin, S.L., 2004, Predicting Water Content Using Gaussian Model on Soil Spectra, Remote Sensing of Environment, 89(4), PP. 535-552.
  41. Yan, F., Qin, Z., Li, M. & Li, W., 2006, Progress in Soil Moisture Estimation from Remote Sensing Data for Agricultural Drought Monitoring, In Proc. of SPIE. Vol., September, (Vol. 6366, PP. 636601-1).
  42. Younis, S.M.Z. & Iqbal, J., 2015, Estimation of Soil Moisture Using Multispectral and FTIR Techniques, The Egyptian Journal of Remote Sensing and Space Science, 18(2), PP. 151-161.
  43. Zhan, Z., Qin, Q., Ghulan, A. & Wang, D., 2007, NIR-Red Spectral Space Based New Method for Soil Moisture Monitoring, Science in China Series D: Earth Sciences, 50(2), PP. 283-289.
  44. Zhang, D., Li, Z.L., Tang, R., Tang, B.H., Wu, H., Lu, J. & Shao, K., 2015, Validation of a Practical Normalized Soil Moisture Model with in Situ Measurements in Humid and Semi-Arid Regions, International Journal of Remote Sensing, 36(19-20), PP. 5015-5030.
  45. Zhang, D., Tang, R., Zhao, W., Tang, B., Wu, H., Shao, K. & Li, Z.L., 2014, Surface Soil Water Content Estimation from Thermal Remote Sensing Based on the Temporal Variation of Land Surface Temperature, Remote Sensing, 6(4), PP. 3170-3187.
  46. Zhang, D. & Zhou, G., 2016, Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review, Sensors, 16(8), p. 1308.