palette
پیش‌بینی پتانیسل پراکنش قورباغه پادراز جنگلی ایران ( Rana pesudodalmatina) با استفاده از مدل‌سازی توزیع گونه‌ای
فراهم احمد زاده, نگار امیری, الهام ابراهیمی

چکیده

امروزه مشخص شده پیش­بینی پتانسیل توزیع گونه­های در خطر انقراض با استفاده از روش­های مد­­لسازی به شدت سودمند بوده و استفاده از این روش­ها کمک بزرگی به حفاظت و مدیریت اکولوژیکی می­کند. قورباغه پادراز جنگلی (Rana pesudodalmatina) از جمله گونه­های بومی انحصاری ایران است. در این مطالعه اطلاعات حضور قورباغه پا دراز جنگلی از طریق پایش میدانی در زیستگاه­های فعلی گونه گردآوردی گردید و 19 متغیر اقلیمی از پایگاه داده Worldclim استخراج شد. در مرحله بعدی با استفاده از آزمون همبستگی پیرسون، همبستگی بین متغیرهای اقلیمی با ضریب همبستگی 0.75 مورد سنجش قرار گرفت  و سپس متغیرهای دارای همبستگی بالا از فرآیند مدل­سازی حذف شدند. مدل­سازی توزیع گونه­ای قورباغه پا دراز جنگلی با استفاده از بسته آماری sdm که شامل مدل­های GLM، GAM، RF، MARS، CART، FDA، BRT و SVM می­باشد در محیط نرم­افزارR انجام شد. در نهایت با استفاده از مدل­سازی ترکیبی[1] به عنوان یک فرآیند سنتز نتایج مدل­های فردی برای افزایش دقت قدرت پیش­بینی، یک نقشه ترکیبی جامع به­دست آمد. نتایج حاصل از مدل ترکیبی برای تعیین پتانسیل­های زیستگاهی قورباغه پا دراز جنگلی در ایران پیش­بینی می­کند در شرایط اقلیمی حاضر جنگل­های هیرکانی دارای حداکثر پتانسیل توزیع برای این گونه هستند. همچنین از نتایج ارزیابی مدل­ها نشان داد شاخص AUC  و TSS وضعیت بهتری داشته و مدل SVM بیشترین درجه اعتبار است. علاوه بر این نتایج حاصل از سنجش اهمیت هر یک از متغیرها نشان داد BIO6 بیشترین و BIO19 کمترین اهمیت را برای این گونه دارند.


 

واژگان کلیدی
قورباغه پادراز جنگلی، بسته آماری sdm ، مدل‌سازی توزیع گونه‌ای، مدل ترکیبی.

منابع و مآخذ مقاله

حسین زاده، م.، آبادیان، م. و پویانی، ا، 1394، ارزيابي پراكنش جغرافيايي كنوني و آينده گونه معرفي شده جكوي شكم زرد خانگي Hemidactylus flaviviridis Ruppell, 1840 درايران با استفاده از مدلسازي پراكنش گونه‌ایی. مجله پژوهشهاي جانوري (مجله زيست شناسي ايران). 28(4): 431-440.

صابر فر، ر.، فلاحتکار س و کیا ح، 1395، مروری بر مدل‌های توزیع گونه‌ای با معرفی مدل نمادین .سومین کنفرانس بین المللی مدیریت در قرن21 .کفاش، ا.، یوسفی، م.، احمدی، م.، کلهر، گ.، کابلی، م، 1392، پیش بینی اثر تغییرات اقلیمی بر خزندگان مناطق بیابانی ایران ( مطالعه موردی سوسمار دم تیغی بین النهرین Saara loricata). سومین کنفرانس برنامه ریزی و مدیریت محیط زیست، دانشگاه تهران.

کمی، ح. ق. و ابراهیمی، م، 1383 ، مطالعۀ ریزساختار‌هاي سطحی دهان لارو قورباغه جنگلی با استفاده از میکروسکوپ الکترونی نگاره. دوازدهمین کنفرانس سراسري زیست شناسی ایران، دانشگاه بوعلی سیناي همدان.

کمی، ح. ق.، اسماعیلی، ح. و ابراهیمی، م، 1381 ، .بررسی صفات مورفومتریک، رابطه طول و وزن و نسبت جنسی در قورباغۀ جنگلی در Rana macrocnemis pseudodalmatina استان گلستان .اولین کنفرانس علوم و تنوع زیستی جانوري، دانشگاه شهید باهنرکرمان.

مومنی م. و زحمتکش، ي، 1383 ، بررسی امکان تکثیر و پرورش گونه Rana ridibunda در تالاب انزلی. اولین کنگرة علوم دام و آبزیان کشور دانشگاه تهران.مجله علمی پژوهشی دانشگاه اصفهان. (6)35: 222-209

میرزاجانی، ع.، کیابی، ب. و باقري، س، 1385 ، بررسی رشد لارو قورباغه مردابی و برآورد جعمیت گونۀ Rana ridibunda در تالاب انزلی، مجله زیست شناسی ایران. (2)19: 202-191.

یوسفی‌سیاهکلرودی، س.، سعیدی، ه.، بهفر،م، 1395 ، اطلس دوزیستان ایران. انتشارات جهاد دانشگاهی واحد خوارزمی.

Araújo, M. B., and Peterson, A. T, 2012, Uses and misuses of bioclimatic envelope the Past, a Hope for the Future. Springer-Verlag, London.

Austin, M. P, 2002, Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological modelling, 157(2-3), 101-118.

Behjou, F. K., Majnounian, B., Dvořák, J., Namiranian, M., Saeed, A., & Feghhi, J, 2009, Productivity and cost of manual felling with a chainsaw in Caspian forests. Journal of Forest Science, 55(2), 96-100.

Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. and Courchamp, F, 2012, Impacts of climate change on the future of biodiversity. Ecology letters. 15(4), 365-377.

Bosso, L., Di Febbraro, M., Cristinzio, G., Zoina, A., and Russo, D, 2016, Shedding light on the effects of climate change on the potential distribution of Xylella fastidiosa in the Mediterranean basin. Biological invasions, 18(6), 1759-1768.

Bosso, L., Luchi, N., Maresi, G., Cristinzio, G., Smeraldo, S., and Russo, D, 2017, Predicting current and future disease outbreaks of Diplodia sapinea shoot blight in Italy: species distribution models as a tool for forest mana gement planning. Forest Ecology and Management, 400, 655-664.

Breiman, L, 1984, Classification and regression trees. – Wadsworth International Group, Belmont, CA, USA.

Breiman, L, 2001, Random forests. Machine learning. 45(1): 5-32.

Bui, D. T., Ho, T. C., Revhaug, I., Pradhan, B., and Nguyen, D. B, 2014, Landslide susceptibility mapping along the national road 32 of Vietnam using GIS-based J48 decision tree classifier and its ensembles. In Cartography from pole to pole (pp. 303-317). Springer Berlin Heidelberg. doi: 10.1007/978-3-642-32618-9_22.

Chen, W., Pourghasemi, H. R., Kornejady, A., and Zhang, N, 2017, Landslide spatial modeling: introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma, 305, 314-327.

Clark, J. S., Gelfand, A. E., Woodall, C. W., and Zhu, K, 2014, More than the sum of the parts: forest climate response from joint species distribution models. Ecological Applications, 24(5), 990-999.

Drake, J. M., Randin, C., & Guisan, A, 2006, Modelling ecological niches with support vector machines. Journal of applied ecology, 43(3), 424-432.

Eiselt, J., Schmidtler, J.F. and Schmidtler, F, 1971, Vorläufige Mitteilung über zwei neue Subspezies von Amphibia salientia aus dem Iran. Annalen des Naturhistorischen Museums in Wien. 75: 383-385.

Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., ... and Li, J, 2006, Novel methods improve prediction of species' distributions from occurrence data. Ecography, 129-151.

Felicisimo, A. M., Cuartero, A., Remondo, J., and Quiros, E, 2013, Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides. 10(2): 175-189.

Friedman, J. H, 2001, Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232.

Génard, M., and Lescourret, F, 2013, Combining niche and dispersal in a simple model (NDM) of species distribution. PloS one, 8(11), e79948.

Guisan, A., and Theurillat, J. P, 2000, Assessing alpine plant vulnerability to climate change: a modeling perspective. Integrated assessment, 1(4), 307-320.

Guisan, A., and Thuiller, W, 2005, Predicting species distribution: offering more than simple habitat models. Ecology letters, 8(9), 993-1009.

Guisan, A., and Zimmermann, N. E, 2000, Predictive habitat distribution models in ecology. Ecological modelling, 135(2-3), 147-186.

Gutt, J., Zurell, D., Bracegridle, T., Cheung, W., Clark, M., Convey, P., ... and Griffiths, H, 2012, Correlative and dynamic species distribution modelling for ecological predictions in the Antarctic: a cross-disciplinary concept. Polar Research, 31(1), 11091.

Harris, D. J, 2015, Generating realistic assemblages with a joint species distribution model. Methods in Ecology and Evolution, 6(4), 465-473.

Hastie, T. J., and Tibshirani, R. J, 1990, Generalized additive models, volume 43 of Monographs on Statistics and Applied Probability.

Hastie, T., Tibshirani, R., and Buja, A, 1994, Flexible discriminant analysis by optimal scoring. Journal of the American statistical association, 89(428), 1255-1270.

Hayes, B. J., Cogan, N. O., Pembleton, L. W., Goddard, M. E., Wang, J., Spangenberg, G. C., and Forster, J. W, 2013, Prospects for genomic selection in forage plant species. Plant Breeding, 132(2), 133-143.

Hays, J.D., Imbrie, J. and Shackleton, N.J, 1976, Variations in the Earth's orbit: pacemaker of the ice ages. Science. 194(4270):121-1132.

Hewitt, G.M. (2004). The structure of biodiversity–insights from molecular phylogeography. Frontiers in zoology. 1(1):1.

Hijmans, RJ., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A, 2005, Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 25: 1965–1978.

Jebur, M. N., Pradhan, B., and Tehrany, M. S, 2014, Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale. Remote Sensing of Environment. 152: 150-165.

Lee, C. O., Arge, C. N., Odstrčil, D., Millward, G., Pizzo, V., Quinn, J. M., and Henney, C. J, 2013, Ensemble modeling of CME propagation. Solar Physics. 285(1-2): 349-368.

Marvi mohadjer, M.R, 2006, Silviculture. University of Tehran press. Tehran.

McCullagh, P, 1973, Nelder. JA (1989), Generalized Linear Models. CRC Monographs on Statistics and Applied Probability, Springer Verlag, New York.

Mieszkowska, N., Milligan, G., Burrows, M. T., Freckleton, R., and Spencer, M, 2013, Dynamic species distribution models from categorical survey data. Journal of Animal Ecology, 82(6), 1215-1226.

Naimi, B., and Araujo, M. B, 2016, sdm: a reproducible and extensible R platform for species distribution modelling. Ecography. 39(4): 368-375.

O’Connor, R. J, 2002, The conceptual basis of species distribution modeling: time for a paradigm shift. Predicting species occurrences: issues of accuracy and scale. Island Press, Washington, DC, USA, 25-33.

Ovaskainen, O., Abrego, N., Halme, P., and Dunson, D, 2016, Using latent variable models to identify large networks of species‐to‐species associations at different spatial scales. Methods in Ecology and Evolution, 7(5), 549-555.

Pearson, R. G, 2007, Species’ distribution modeling for conservation educators and practitioners. Synthesis. American Museum of Natural History, 50.

Pearson, R.G., Raxworthy, C.J., Nakamura, M. and Townsend Peterson, A, 2007, Predicting species distribution from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography. 34(1):102-117

Phillips, S. J., Anderson, R. P., and Schapire, R. E, 2006, Maximum entropy modeling of species geographic distributions. Ecological modelling, 190(3-4), 231-259.

Poorzady, M., & Bakhtiari, F, 2009, Spatial and temporal changes of Hyrcanian forest in Iran. iForest-Biogeosciences and Forestry, 2(5), 198.Renner, I. W., and Warton, D. I, 2013, Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics, 69(1), 274-281.

Pounds, J. A., Fogden, M. P., and Campbell, J. H, 1999, Biological response to climate change on a tropical mountain. Nature, 398(6728), 611-615.Guisan, A., and Thuiller, W, 2005, Predicting species distribution: offering more than simple habitat models. Ecology letters, 8(9), 993-1009.

Pourmajidian, M. R., & Rahmani, A, 2009, The influence of single-tree selection cutting on silvicultural properties of a northern hardwood forest in Iran. American-Eurasian J Agric Environ Sci, 5(4), 526-532.

Roelants, K., Gower, D.J., Wilkinson, M., Loader, S.P., Biju, S.D., Guillaume, K. and Bossuyt, F, 2007, Global patterns of diversification in the history of modern amphibians. Proceedings of the National Academy of Sciences. 104(3):887-892.

Rokach, L, 2010, Ensemble-based classifiers. Artificial Intelligence Review. 33(1): 1-39.

Royle, J. A., Chandler, R. B., Yackulic, C., and Nichols, J. D, 2012, Likelihood analysis of species occurrence probability from presence‐only data for modelling species distributions. Methods in Ecology and Evolution, 3(3), 545-554.

Sagheb-Talebi, Kh., Sajedi, T., Pourhashemi, M., 2014, Forests of Iran, A Treasure from

Sechrest, W., Brooks, T. M., da Fonseca, G. A., Konstant, W. R., Mittermeier, R. A., Purvis, A., ... & Gittleman, J. L, 2002, Hotspots and the conservation of evolutionary history. Proceedings of the National Academy of Sciences, 99(4), 2067-2071.‏

Set of tutorials on SVM’s and kernel methods [Online]. Available: http://www.kernel-machines.org/tutorial.html.

Stuart, S. N., Chanson, J. S., Cox, N. A., Young, B. E., Rodrigues, A. S., Fischman, D. L., and Waller, R. W, 2004, Status and trends of amphibian declines and extinctions worldwide. Science, 306(5702), 1783-1786.

Stuart, S. N., Chanson, J. S., Cox, N. A., Young, B. E., Rodrigues, A. S., Fischman, D. L., & Waller, R. W, 2004, Status and trends of amphibian declines and extinctions worldwide. Science, 306(5702), 1783-1786.‏

Taberlet, P., Fumagalli, L., Wust-Saucy, A.G. and Cosson, J.F, 1998, Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology. 7:453–464.

Tikhonov, G., Abrego, N., Dunson, D., and Ovaskainen, O, 2017, Using joint species distribution models for evaluating how species‐to‐species associations depend on the environmental context. Methods in Ecology and Evolution, 8(4), 443-452.

Vane-Wright, R.I., Humphries, C.J., Williams, P.H, 1991,What to protect? – Systematics and the agony of choice. Biological Conservation, 55, 235-254.

Vapnik., V, 1995, The Nature of Statistical Learning Theory, Springer- Verlag, New York.

Vapnik., V, 1995, The Nature of Statistical Learning Theory, Springer- Verlag, New York.

Veith, M., Kosuch, J. and Vences, M, 2003, Climatic oscillations triggered post-Messinian speciation of Western Palearctic brown frogs (Amphibia, Ranidae). Molecular phylogenetics and evolution. 26(2):310-327.

Vences, M., Hauswaldt, J.S., Steinfartz, S., Rupp, O., Goesmann, A., Künzel, S. and Laugsch, C, 2013, Radically different phylogeographies and patterns of genetic variation in two European brown frogs, genus Rana. Molecular phylogenetics and evolution. 68(3):657-670.

Vences, M., Hauswaldt, J.S., Steinfartz, S., Rupp, O., Goesmann, A., Künzel, S. and Laugsch, C, 2013, Radically different phylogeographies and patterns of genetic variation in two European brown frogs, genus Rana. Molecular phylogenetics and evolution. 68(3):657-670.

Wake, D. B., and Vredenburg, V. T, 2008, Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proceedings of the National Academy of Sciences, 105(Supplement 1), 11466-11473.

Walter., S.D, 2002, Properties of the summary receiver operating characteristic (SROC) curve for diagnostic test data. Stat Med. 21: 1237–1256.

Williams, P. H., & Gaston, K. J, 1998, Biodiversity indicators: graphical techniques, smoothing and searching for what makes relationships work. Ecography, 551-560.

Yackulic, C. B., Chandler, R., Zipkin, E. F., Royle, J. A., Nichols, J. D., Campbell Grant, E. H., and Veran, S, 2013, Presence‐only modelling using MAXENT: when can we trust the inferences?. Methods in Ecology and Evolution, 4(3), 236-243.

Zurell, D., Jeltsch, F., Dormann, C. F., and Schröder, B, 2009, Static species distribution models in dynamically changing systems: how good can predictions really be., Ecography, 32(5), 733-744.


ارجاعات
  • در حال حاضر ارجاعی نیست.