نوع مقاله : علمی - پژوهشی

نویسندگان

گروه مهندسی شهرسازی، واحد سنندج، دانشگاه آزاد اسلامی، سنندج، ایران

چکیده

فعالیت‌‌ فیزیکی، یکی از مهمترین جنبه‌‌های زندگی است که مزایای زیست‌محیطی، اقتصادی، اجتماعی و سلامتی بسیاری را با خود به‌همراه دارد. با توجه به‌اهمیت فضای‌ عمومی ‌شهرها در وقوع ‌این فعالیت‌ها، موضوع توسعه محیط مصنوعی، به‌عنوان چارچوبی که بتواند فعالیت‌‌های فیزیکی را ترویج دهد، به یکی از مسائل مطرح در گفتمان‌ شهرسازی تبدیل شده ‌است. پژوهش حاضر، با هدف سنجش عینی کیفیت‌‌های تاثیرگذار محیطی بر فعالیت‌‌های فیزیکی ساکنان، در چهار محدوده منتخب، به شعاع 500 متر از بافت‌‌های چهارگانه شهر سنندج، انجام‌ شده است. با مروری بر پژوهش‌‌های پیشین، مولفه‌‌های تاثیرگذار محیطی بر ‌این فعالیت‌ها شناسایی و داده‌­‌های مربوط به هریک از آنها با ‌استفاده از لایه‌‌های شبکه ‌معابر و کاربری ‌اراضی در سیستم اطلاعات جغرافیایی تهیه و در فرمول ارزیابی مربوط به هر‌ معیار، جاگذاری شده‌اند. ارزیابی‌‌های فوق، به‌صورت ترکیبی و در شاخص‌‌های اسمارتراک و شاخص قابلیت پیاده‌مداری، مورد بررسی قرار گرفته‌اند. سپس با مقایسه تطبیقی نتایج حاصل از شاخص‌‌های یاد‌شده، محدوده‌‌های مورد بررسی به لحاظ پیاده‌مداری دسته‌بندی شده‌اند؛ داده‌‌های مربوط به فعالیت‌‌های فیزیکی 421 نفر از ساکنان نیز با استفاده از پرسشنامه، جمع‌آوری‌شده و در نرم‌افزار SPSS و از طریق آزمون واریانس، میانگین آنها محاسبه، سپس با استفاده از تحلیل رگرسیون، ارتباط بین آنها با کیفیت‌‌های پیاده‌مداری محیط بررسی شده است. نتایج حاصل از ‌این تحقیق، نشان‌دهنده اثرات بالقوه کیفیت‌‌های محیط بر فعالیت‌‌های فیزیکی ساکنان است.

کلیدواژه‌ها

عنوان مقاله [English]

Objective Measurement of Environmental Factors Influencing the Citizens’ Physical Activity, by Employing Geographic Information System, Case Study: Sanandaj city

نویسندگان [English]

  • Nassim Hoorijani
  • Farzin charehjoo

Department of Urban Design and planning, Faculty of Engineering, Islamic Azad University, Sanandaj Branch, Kurdistan, Iran.

چکیده [English]

 Physical activity is one of the most important aspects of life that has many environmental, economic, social and health benefits. According to the importance of the public space of cities in the occurrence of these activities, the issue of developing built environments as a framework that can promote physical activities has become of the major issues in urban societies around the world. This research is aimed at objectively measuring the environmental qualities influencing the residents’ physical activities. It has been conducted in an analytical-applied manner, in four areas with a buffer of 500 meters selected from the four urban context of Sanandaj city in Kurdistan province. Through a review of the previous researches, the factors influencing the physical activities have been identified and the data related to each of them have been prepared using the layers of street networks and land uses in geographic information system. The obtained data have been placed in quantitative evaluation formulas related to each criterion. The mentioned evaluations have been studied in a combinational manner and in smartraq and pedestrian orientation indexes, as the two common one. Then, through comparison of the results of the mentioned indexes, the studied areas were classified in groups from high pedestrian oriented to non-pedestrian oriented. The data of physical activities were gathered from 421 inhabitants by questionnaire. The mean of the data has been calculated in SPSS software by variance tests. At the final stage of the research, the relation between pedestrian orientation qualities of the built environment and the level of the residents’ physical activities has been studied by regression analysis. The results of this research indicate the importance of the built environment on the level of physical activity and hence the public health of residents.

کلیدواژه‌ها [English]

  • Urban Design
  • Physical activity
  • objective measurements
  • Ggeographic information system
  1. اسکندرپور، م.، کوزه گر کالجی، ل.، حنیفی اصل، ی. و شیخکانلوی میلان، ن.، ۲۰۱۷، تحلیلی بر عملکرد فضاهای عمومی شهری با اهداف پیاده‌مداری (مطالعه موردی: بخش مرکزی شهر ارومیه)، فصلنامه ساختار و کارکرد شهری، 4(14)، 118-140.‬
  2. اسمعیل پور، ن.، کارآموز، ا. و فخارزاده، ز.، ۲۰۱۵، ارزیابی اختلاط کاربری در فضای شهری خیابان و راهکارهای ارتقای آن (مورد نمونه: خیابان کاشانی در بافت میانی شهر یزد)، فصلنامه تحقیقات جغرافیایی، 30(3)، 1-24.‬‬‬‬‬‬‬‬
  3. امین زاده گوهرریزی، ب. و بدر، س.،۱۳۹۱، تحلیل شاخص‌های نفوذپذیری در بافت های شهری، هویت شهر، 6(12)، 39-48.‬‬‬‬‬‬‬‬
  4. بحرینی، س. و خسروی، ح.، 1389، معیارهای کالبدی-فضایی موثر بر میزان پیاده‌روی، سلامت و آمادگی جسمانی، پردیس هنرهای زیبا دانشگاه تهران، 2(43)، 5-16.‬‬‬‬‬‬‬‬
  5. پورمحمدی، م.، موسوی، ص.، ستار، م. و حسین آبادی، س.، 1395، ارزیابی الگوی اختلاط کاربری زمین در محلات شهر سبزوار، فصلنامه مطالعات جغرافیایی مناطق خشک، 6(22)، 34-53.‬‬‬‬‬‬‬‬
  6. جوادی، ق.، طالعی، م. و کریمی، م.، 1392، توسعه مدل ارزیابی اثرات اختلاط کاربری‌های شهری بر پایه شاخص‌ها و تحلیل‌های مکانی، جغرافیا و آمایش شهری - منطقه ای، 3(8)، 69-84.‬‬‬‬‬‬‬‬
  7. چاره‌جو، ف. و حوریجانی، ن.، (مترجمان)، ۱۳۹۶، سلامت و طراحی مجتمع‌های زیستی: تاثیر محیط مصنوع بر فعالیت‌های فیزیکی، تهران: اول و آخر.‬‬‬‬‬‬‬‬
  8. حکیمیان، پ. آ.، 1394، فضاهای شهری سلامت‌محور: ویژگی‌های کالبدی تأثیرگذار بر چاقی افراد، معماری و شهرسازی آرمان شهر، 8(15)، 215-224.‬‬‬‬‬‬‬‬
  9. حکیمیان، پ. آ، ۱۳۹۵، نقش کیفیت‌های ادراک شده طراحی شهری در فعالیت بدنی ساکنان محله، نمونه موردی: محلات سعادت آباد و شهرک قدس تهران، صفه، 26(72)، 87-107.‬‬‬‬‬‬‬‬
  10. رضا زاده، ر.، زبردست، ا. و لطیفی اسکویی، ل، 1392، سنجش ذهنی قابلیت پیاده‌مداری و مولّفه‌های تأثیرگذار بر آن در محلات؛ مطالعه موردی: محله چیذر، نشریه علمی - پژوهشی مدیریت شهری و روستایی، 9(28)، 297-312.‬‬‬‬‬‬‬‬
  11. رضازاده، ر. و لطیفی اسکویی، ل.، ۲۰۱۵، تأثیر قابلیت پیاده‌مداری محله‌ها بر رضایت‌مندی سکونتی، نمونه موردی: محله چیذر، معماری و شهرسازی آرمان شهر، 7(13)، 321-331.‬‬‬‬‬‬‬‬
  12. سبز علی یمقانی، ع. و آل شیخ، ع. ا.، ۱۳۹۴، توسعه و ارزیابی یک شاخص قابلیت پیاده روی (مطالعه موردی: محلات شهر قم)، نشریه علمی پژوهشی علوم و فنون نقشه برداری، 5(1)، 159-174.‬‬‬‬‬‬‬‬
  13. کاظمی، ع. و گل لاله، ط.، 1394، بازشناسی عوامل کالبدی_فضایی مؤثر بر پیاده‌روی شهروندان در محله‌های شهری (مطالعه موردی: نوشهر)، فصلنامه مطالعات شهری، 6(22)، 89-97.‬‬‬‬‬‬‬‬
  14. گازرانی، ف.، ۱۳۷۸، برنامه‌ریزی توسعه متعادل بخش مرکزی شهر سنندج (پایان‌نامه کارشناسی ارشد)، دانشگاه شهید بهشتی، دانشگاه شهید بهشتی، تهران.‬‬‬‬‬‬‬‬
  15. لطفی، ص. و شکیبایی، ا.،1392، بررسی و آزمون شاخص قابلیت پیاده‌روی و ارتباط آن با محیط ساخته‌شده شهر، نمونه موردی: شهر قروه، معماری و شهرسازی آرمان شهر، 6(11)، 383-392.‬‬‬‬‬‬‬‬
  16. موسایی‌جو، ا. و نادری، م.، 1392، بررسی مفهوم اختلاط کاربری‌ها و تأثیر آن در سیستم حمل و نقل همگانی (ج 1، ص 8)، مقاله ارائه شده در کنفرانس سالانه تحقیقات در مهندسی عمران، معماری و شهرسازی و محیط زیست پایدار.‬‬‬‬‬‬‬‬
  17. نجفی، س. و یعقوبی، ش.، 1393، سنجش میزان پیاده‌مداری با مدل HQE2R در راستای اجرای رویکردهای پایداری در محدوده میدان سپاه ملایر، مطالعات محیطی هفت حصار، 3(9)، 47-56.‬‬‬‬‬‬‬‬
  18. نوری، س، ۱۳۹۳، برنامه ریزی توسعه متعادل بخش مرکزی شهر سنندج (پایان‌نامه کارشناسی ارشد)، دانشگاه شهید بهشتی، تهران.‬‬‬‬‬‬‬‬
  19. واتسون‌، د.؛ پلاتوس، ‏‫آ.‬؛ شیبلی، ‏‫ر.‬؛ ذاکر حقیقی، ک. و غراوی، م.، 1389، مجموعه کامل استانداردهای طراحی شهری، تهران: مرکز مطالعاتی و تحقیقاتی شهرسازی و معماری.‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬
  20. Benton, J.S., Anderson, J., Hunter, R.F. and French, D.P., 2016, The effect of changing the built environment on physical activity: a quantitative review of the risk of bias in natural experiments, Int. J. Behav. Nutr. Phys. Act. 13, 107.
  21. Bhadra, S., Sazid, A.K.M.T. and Esraz-Ul-Zannat, M., 2016, A GIS Based Walkability Measurement within the Built Environment of Khulna City, Bangladesh, J. Bangladesh Inst. Plan. 145-158.
  22. Bödeker, M., 2018, Walking and Walkability in Pre-Set and Self-Defined Neighborhoods: A Mental Mapping Study in Older Adults, Int. J. Environ. Res. Public. Health 15.
  23. Bordoloi, R., Mote, A., Sarkar, P.P. and Mallikarjuna, C., 2013, Quantification of Land Use Diversity in The Context of Mixed Land Use. Procedia - Soc. Behav, Sci., 2nd Conference of Transportation Research Group of India (2nd CTRG) 104, 563-572.
  24. Bramiana, C.N., Widiastuti, R. and Harsritanto, B.I., 2017, Implementing Mixed Land Use Rooting Jane Jacobs’ Concept of Diversity in Urban Sustainability, MODUL 17, 27-35.
  25. Burton, N.W., Turrell, G., Oldenburg, B. and Sallis, J.F., 2005, The Relative Contributions of Psychological, Social, and Environmental Variables to Explain Participation in Walking, Moderate-, and Vigorous-Intensity Leisure-Time Physical Activity, J. Phys. Act. Health 2, 181-196.
  26. Butler, E.N., Ambs, A.M.H., Reedy, J. and Bowles, H.R., 2011, Identifying GIS measures of the physical activity built environment through a review of the literature, J. Phys. Act. Health 8 Suppl 1, S91-97.
  27. Cerin, E., Zhang, C.J.P., Barnett, A., Sit, C.H.P., Cheung, M.M.C., Johnston, J.M., Lai, P.-C. and Lee, R.S.Y., 2016, Associations of objectively-assessed neighborhood characteristics with older adults’ total physical activity and sedentary time in an ultra-dense urban environment: Findings from the ALECS study, Health Place 42, 1-10.
  28. Cerin, E., Zhang, C.J.P., Barnett, A., Sit, C.H.P., Cheung, M.M.C., Johnston, J.M., Lai, P.-C. and Lee, R.S.Y., 2016, Associations of objectively-assessed neighborhood charac-teristics with older adults’ total physical activity and sedentary time in an ultra-dense urban environment: Findings from the ALECS study, Health Place 42, 1-10.
  29. Charehjoo, F., 2012, Sustainable Physical Form and Neighborhood Satisfaction: the Case of Sanandaj City, Iran, Presented at the IBIMA, International Real State Conference.
  30. Charehjoo, F., 2013, Evaluating the sustainability of the physical urban form of sanandaj city, Iran (phd), Universiti Teknologi Malaysia, Faculty of Built Environment.
  31. Charehjoo, F., 2013, Evaluating the sustainability of the physical urban form of sanandaj city, Iran (PHD thesis), Universiti Teknologi Malaysia, Faculty of Built Environment.
  32. Chiu, M., Shah, B.R., Maclagan, L.C., Rezai, M.-R., Austin, P.C. and Tu, J.V., 2015, Walk Score® and the prevalence of utilitarian walking and obesity among Ontario adults: A cross-sectional study, Health Rep. 26, 3-10.
  33. Chiu, M., Shah, B.R., Maclagan, L.C., Rezai, M.-R., Austin, P.C. and Tu, J.V., 2015, Walk Score® and the prevalence of utilitarian walking and obesity among Ontario adults: A cross-sectional study, Health Rep. 26, 3-10.
  34. Christian, H.E., Bull, F.C., Middleton, N.J., Knuiman, M.W., Divitini, M.L., Hooper, P., Amarasinghe, A. and Giles-Corti, B., 2011, How important is the land use mix measure in understanding walking behaviour? Results from the RESIDE study, Int. J. Behav. Nutr. Phys. Act. 8, 55.
  35. County planning, 2018, STRONGSVILLE MASTER PLAN, Strongsville.
  36. da Silva, I.C.M., Hino, A.A., Lopes, A., Ekelund, U., Brage, S., Gonçalves, H., Menezes, A.B., Reis, R.S. and Hallal, P.C., 2017, Built environment and physical activity: domain- and activity-specific associations among Brazilian adolescents, BMC Public Health 17, 616.
  37. Delso, J., Martin, B., Ortega, E. and Otero, I., 2017, A Model for Assessing Pedestrian Corridors. Application to Vitoria-Gasteiz City (Spain), Sustainability 9, 434.
  38. Dill, J., 2004, Measuring Network Connectivity for Bicycling and Walking, School of Urban Studies and Planning Portland State University Portland, OR USA.
  39. Feng, J., Glass, T.A., Curriero, F.C., Stewart, W.F. and Schwartz, B.S., 2010, The built environment and obesity: a systematic review of the epidemiologic evidence, Health Place 16, 175-190.
  40. Frank, L.D., Sallis, J.F., Saelens, B.E., Leary, L., Cain, K., Conway, T.L. and Hess, P.M., 2010, The development of a walkability index: application to the Neighborhood Quality of Life Study, Br. J. Sports Med. 44, 924-933.
  41. Frank, L.D., Schmid, T.L., Sallis, J.F., Chapman, J. and Saelens, B.E., 2005, Linking objectively measured physical activity with objectively measured urban form: findings from SMARTRAQ. Am. J. Prev. Med. 28, 117-125.
  42. Graham, D.J., Wall, M.M., Larson, N. and Neumark-Sztainer, D., 2014, Multicontextual Correlates of Adolescent Leisure-Time Physical Activity, Am. J. Prev. Med. 46, 605-616.
  43. Guerra, E., Caudillo, C., Monkkonen, P. and Montejano, J., 2018, Urban form, transit supply, and travel behavior in Latin America: Evidence from Mexico’s 100 largest urban areas, Transp. Policy Pages 98-105.
  44. Hinckson, E.A., Duncan, S., Oliver, M., Mavoa, S., Cerin, E., Badland, H., Stewart, T., Ivory, V., McPhee, J. and Schofield, G., 2015, Built environment and physical activity in New Zealand adolescents: a protocol for a cross-sectional study, BMJ Open 4, e004475.
  45. Hino, A.A.F., Reis, R.S., Sarmiento, O.L., Parra, D.C. and Brownson, R.C., 2014, Built Environment and Physical Activity for Transportation in Adults from Curitiba, Brazil, J. Urban Health Bull. N. Y. Acad. Med. 91, 446-462.
  46. Hoppenbrouwer, E. and Louw, E., 2005, Mixed-use development: Theory and practice in Amsterdam’s Eastern Docklands. Eur, Plan. Stud. 13, 967-983.
  47. Inani Azmi, D. and Ahmad, P., 2015, A GIS Approach: Determinant of neighbourhood environment indices in influencing walkability between two precincts in Putrajaya, Procedia - Soc. Behav. Sci., 170 ( 2015 ) 557 – 566.
  48. Jauregui, A., 2016, Perceived and Objective Measures of Neighborhood Environment for Physical Activity Among Mexican Adults, 2011. Prev. Chronic. Dis. 13.
  49. Kamruzzaman, M., Washington, S., Baker, D., Brown, W., Giles-Corti, B. and Turrell, G., 2016, Built environment impacts on walking for transport in Brisbane, Australia, Transportation 43, 53-77.
  50. Kärmeniemi, M. Lankila, T., Ikäheimo, T., Koivumaa-Honkanen, H. and Korpelainen, R., 2018, The Built Environment as a Determinant of Physical Activity: A Systematic Review of Longitudinal Studies and Natural Experiments, Ann. Behav. Med. 52, 239-251.
  51. Knight, P.L. and Marshall, W.E., 2015, The metrics of street network connectivity: their inconsistencies, J. Urban. Int. Res. Placemaking Urban Sustain. 8, 241-259.
  52. Koohsari, M.J., Sugiyama, T., Hanibuchi, T., Shibata, A., Ishii, K., Liao, Y. and Oka, K., 2018, Validity of Walk Score® as a measure of neighborhood walkability in Japan, Prev. Med. Rep. 9, 114-117.
  53. Kumar, R., 2010, Walkability of Neighborhoods: A Critical Analysis of the Role Played by Zoning Codes in Creating a Walkable Environment, LAP LAMBERT Academic Publishing, Saarbrücken, Germany.
  54. Kumar, R., 2010, Walkability of Neighbor-hoods: A Critical Analysis of the Role Played by Zoning Codes in Creating a Walkable Environment, LAP LAMBERT Academic Publishing, Saarbrücken, Germany.
  55. Leslie, E., Coffee, N., Frank, L., Owen, N., Bauman, A. and Hugo, G., 2007, Walkability of local communities: Using geographic information systems to objectively assess relevant environmental attributes, Health Place, Part Special Issue: Environmental Justice, Population Health, Critical Theory and GIS 13, 111-122.
  56. LVPC, 2015, Street Connectivity guidance document, Lehigh Valley Planning Commission.
  57. Maharjan, S., Tsurusaki, N. and Divigalpitiya, P., 2018, Influencing Mechanism Analysis of Urban Form on Travel Energy Consumption—Evidence from Fukuoka City, Japan, Urban Sci. 2, 15.
  58. Manaugh, K. and Kreider, T., 2013, What is mixed use? Presenting an interaction method for measuring land use mix, J. Transp. Land Use 6, 63-72.
  59. Mantri, A., 2008, A GIS Based Approach to measure Walkability of a Neighborhood (Master of Community Planning), University of Cincinnati.
  60. Mena, C., Sepúlveda, C., Ormazabal, Y., Fuentes, E. and Palomo, I., 2017, Impact of walkability with regard to physical activity in the prevention of diabetes, Geospatial Health 12.
  61. Nabil, N.A. and Eldayem, G.E.A., 2015, Influence of mixed land-use on realizing the social capital, HBRC J. 11, 285-298.
  62. Nyunt, M.S.Z., Shuvo, F.K., Eng, J.Y., Yap, K.B., Scherer, S., Hee, L.M., Chan, S.P. and Ng, T.P., 2015, Objective and subjective measures of neighborhood environment (NE): relationships with transportation physical activity among older persons, Int. J. Behav. Nutr. Phys. Act. 12, 108.
  63. O’Brien, T.D., Noyes, J., Spencer, L.H., Kubis, H.-P., Hastings, R.P., Whitaker, R., 2016, Systematic review of physical activity and exercise interventions to improve health, fitness and well-being of children and young people who use wheelchairs, BMJ Open Sport Exerc. Med. 2, e000109.
  64. Oliver, M., Mavoa, S., Badland, H., Parker, K., Donovan, P., Kearns, R.A., Lin, E.-Y., Witten, K., 2015, Associations between the neighbourhood built environment and out of school physical activity and active travel: An examination from the Kids in the City study, Health Place 36, 57-64.
  65. Osama, A. and Sayed, T., 2017, Evaluating the impact of connectivity, continuity, and topography of sidewalk network on pedestrian safety, Accid. Anal. Prev. 107, 117-125.
  66. Panter, J., Heinen, E., Mackett, R. and Ogilvie, D., 2016, Impact of New Transport Infrastructure on Walking, Cycling, and Physical Activity, Am. J. Prev. Med. 50, e45-53.
  67. Pearce, J., Witten, K., Bartie, P., 2006, Neighbourhoods and health: a GIS approach to measuring community resource accessibility, J. Epidemiol. Community Health 60, 389-395.
  68. Research, Hall, E.H., York, U. of, Heslington, York, 5dd, Y., 2012, The Influence of Land Use Mix, Density and Urban Design on Health - Research Database, The University of York.
  69. Richard Newland, D., 2015, Smart Growth and Walkability Affect on Vehicle Use and Ownership (Requirements for the Degree Master of Science (Geographic Information Science and Technology)), A Thesis Presented to the Faculty of the USC Graduate School University of Southern California.
  70. Schlossberg, M. and Agrawal, A.W., 2007, An Assessment of GIS-Enabled Walkability Audits, URISA Journal.
  71. Serna, A., Marcotegui, B. and Hernandez, J., 2016, Segmentation of Façades from Urban 3D Point Clouds Using Geometrical and Morphological Attribute-Based Operators, ISPRS Int. J. Geo-Inf. 5, 6.
  72. Shashank, A.F., 2017, Walkability and connectivity: unpacking measures of the built environment (Thesis), Environment: Department of Geography.
  73. Smith, A. smith, 2016, Community Design Indicators and Neighbourhood Population Health (A major research paper presented to Ryerson University in partial Fulfillment of the requirements for the degree of Master of Planning In Urban Develop-ment), Ryerson University, Toronto, Ontario, Canada.
  74. Strath, S.J., Greenwald, M.J., Isaacs, R., Hart, T.L., Lenz, E.K., Dondzila, C.J. and Swartz, A.M., 2012, Measured and perceived environmental characteristics are related to accelerometer defined physical activity in older adults, Int. J. Behav. Nutr. Phys. Act. 9, 40.
  75. Surjono, A. and Ridhoni, M., 2017, Lessons learnt from and sustainability assessment of Indonesian urban kampong, IOP Conf. Ser. Earth Environ. Sci. 70, 12061.
  76. Talley, W.K., 1988, An economic theory of the public transit firm, Transp. Res. Part B Methodol. 22, 45-54.
  77. Tasic, I., Zlatkovic, M., T. Martin, P., J. Porter, R., 2015, Street Connectivity vs. Street Widening: Impact of Enhanced Street Connectivity on Traffic Operations in Transit Supportive Environments, Prepared for the Transportation Research Board.
  78. Thayer, T., 2016, Urban Walkability Measures: Data Quality, Cautions, and Associations with Active and Public Transportation Across Canada, Electron. Thesis Diss. Repos.
  79. Thornton, L.E., Pearce, J.R. and Kavanagh, A.M., 2011, Using Geographic Information Systems (GIS) to assess the role of the built environment in influencing obesity: a glossary, Int. J. Behav. Nutr. Phys. Act. 8, 71.
  80. Tong, X., Wang, Y. and Chan, E.H.W., 2016, International Research Trends and Methods for Walkability and Their Enlightenment in China, Procedia Environ. Sci., International Conference on Geographies of Health and Living in Cities: Making Cities Healthy for All 36, 130-137.
  81. Tresidder, M., 2005, Using GIS to Measure Connectivity: An Exploration of Issues.
  82. UN-Habitat, 2015, spatial Capital in saudi cities Street connectivity study for the City Prosperity Initia, United Nations Human Settlements Programme (UN-Habitat) P.O. Box 30030 00100 Nairobi GPO KENYA. Tel: 254-020-7623120 (Central Office), United Nations Human Settlements Programme (UN-Habitat).
  83. UN-Habitat, 2016a, guidelines for urban planning - UN-Habitat.
  84. UN-Habitat, 2016b, The Street Connectivity Index (SCI) of six municipalities in Jalisco State, Mexico, United Nations Human Settlements Programme (UN-Habitat).
  85. Vargo, J., Stone, B., Glanz, K., 2011, Google Walkability: A New Tool for Local Planning and Public Health Research? J. Phys, Act. Health 9, 689-97.
  86. Victoria transport policy, 2018, Land Use Impacts on Transport: How Land Use Factors Affect Travel Behavior (Victoria Transportation Policy Institute, 2012) SSTI.
  87. Wang, J., Lee, K. and Kwan, M.-P., 2018, Environmental Influences on Leisure-Time Physical Inactivity in the U.S.: An Exploration of Spatial Non-Stationarity, ISPRS Int. J. Geo-Inf. 7, 143.
  88. Wang, L. and Chen, L., 2016, Spatiotemporal dataset on Chinese population distribution and its driving factors from 1949 to 2013, Sci. Data 3.
  89. Wei, Y.D., Xiao, W., Wen, M. and Wei, R., 2016, Walkability, land use and physical activity, Sustainability 8, 1-16.
  90. WHO, 2010, Global Recommendations on Physical Activity for Health, WHO Guidelines Approved by the Guidelines Review Committee, World Health Organization, Geneva.
  91. Zapata-Diomedi, B., Herrera, A.M.M. and Veerman, J.L., 2016, The effects of built environment attributes on physical activity-related health and health care costs outcomes in Australia, Health Place 42, 19-29.
  92. Zapata-Diomedi, B. and Veerman, J.L., 2016, The association between built environment features and physical activity in the Australian context: a synthesis of the literature, BMC Public Health 16, 484.