نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد آبخیزداری، گروه احیاء مناطق خشک و کوهستانی، دانشکده منابع طبیعی، دانشگاه تهران

2 دانشیار گروه احیاء مناطق خشک و کوهستانی، دانشکده منابع طبیعی، دانشگاه تهران

چکیده

مدل‌سازی مکانی رخداد چشمه‌های آب زیرزمینی امکان شناسایی چشمه‌های جدید را، برای مصارف شرب و کشاورزی و صنعت، فراهم می‌آورد. هدف از این تحقیق مدل‌سازیِ مکانی رخداد چشمه‌های آب زیرزمینی، با استفاده از نمایه‌های ژئومرفومتری مؤثر در رخداد آنها و مدل احتمالی وزنی شاهد و بررسی کارآیی این مدل در منطقة البرز میانی است. به‌طورکلی، 584 چشمه در منطقة مورد مطالعه مشخص شدند که 409 (70%) چشمه‌ها‌ برای آموزش و 175 (30%) چشمه‌ها برای اعتبارسنجی مدل وزنی شاهد به‌کار رفتند. چهارده شاخص مهم ژئومرفومتری مؤثر در رخداد چشمه‌ها، در قالب رویکرد مدل وزنی شاهد برای مدل‌سازی مکانی رخداد چشمه‌ها، برگزیده شدند. این عوامل شامل ارتفاع، درجة شیب، جهت، انحنای صفحه‌ای، انحنای پروفیل، شاخص رطوبت توپوگرافی، شاخص قدرت جریان، طول شیب، شاخص موقعیت توپوگرافی، سنگ‌شناسی، فاصله از گسل‌ها، تراکم گسل‌ها، فاصله از آبراهه‌ها و تراکم زهکشی می‌شوند. در این تحقیق، براساس مدل وزنی شاهد، عامل‌های جهت شیب و شاخص رطوبت توپوگرافی، به‌ترتیب، دارای کمترین و بیشترین تأثیر در رخداد چشمه‌های آب زیرزمینی‌اند. نقشة به‌دست‌آمده از مدل‌سازی مکانی رخداد چشمه‌ها، در چهار طبقه، با پتانسیل رخداد کم، متوسط، زیاد و بسیار زیاد قرار گرفت. صحت پیش‌بینی مدل‌ مورد استفاده با استفاده از روش ROC بررسی شد. سطح زیرین منحنی 866/0 به‌دست آمد که نشان می‌دهد مدل وزنی شاهد، در برآورد رخداد مکانی چشمه‌های آب زیرزمینی در منطقة مورد مطالعه، دقت بسیار خوبی دارد. 

عنوان مقاله [English]

Application Indexes Geomorphometry Groundwater Springs on Spatial Modeling Occurrence at Central Alborz Probable with the Approach Weights-of-Evidence

نویسندگان [English]

  • H Emami 1
  • M Jafary 1
  • A Nazari Samani 2
  • A Malekian 2

1 M.Sc. Student of Watershed Management Engineering, Dep, of Arid & Mountainous Region Reclamation, Faculty of Natural Resources, University of Tehran

2 Assosiate Prof., Dep. of Arid & Mountainous Region Reclamation, Faculty of Natural Resources, University of Tehran

چکیده [English]

Spatial modeling of the groundwater springs occurrences allowed the identification of new springs fordrinking, agriculture and industry. The objective of this study was spatial modeling of thegroundwater springs occurrences using the geomorphometry indexes affecting the groundwatersprings occurrences and Weights-of-evidence control model and evaluating this model in CentralAlborz. Generally, 584 springs were identified in the study area that 409 (70%) of them were utilizedfor training and 175 (30%) springs for validation of Weights-of-evidence control model. 14 importantgeomorphometry indexes includin elevation, degree of slope, aspect, plan curvature, profilecurvature, topographic wetnes index, stream power index, slope length, topography position index,lithology, distance of faults, fault density, distance from rivers and drainage density were chosen inthe form of Weights-of-evidence control model for spatial modeling of the groundwater springsoccurrences. According to Weights-of-evidence control model, aspect and topographic wetness indexhad the lowest and the highest impact on the ground water springs occurrences respectively. The mapresulted from spatial modeling of groundwater springs occurrences were classified into 4 classesincluding the low, middle, high, and very high potential occurrences. The model was validated usingROC method, which the area under the curve was 0.866. This means the weights-of-evidence controlmodel was accurate enough for estimating the spatial modeling of groundwater springs occurrences inCentral Alborz.

کلیدواژه‌ها [English]

  • Spatial modeling
  • Groundwater springs
  • Weights-of-evidence
  • ROC
  • Geomorphometry
  • Central Alborz
  1. Al-Abadi, A.M., 2015, Groundwater Potential Mapping at Northeastern Wasit and Missan Governorates, Iraq Using a Data-Driven Weights of Evidence Technique in Framework of GIS, Environ Earth Sci., 74, PP. 1109–1124.
  2. Arthur, J., Wood, H.A., Baker, A.E., Cichon, J.R. & Raines, G.L., 2007, Development and Implementation of a Bayesian Aquifer Vulnerability Assessment in Florida, Nat. Res., 16, PP. 93–107.
  3. Banks, D. & Robins, N., 2002, An Introduction to Groundwater in Crystalline Bedrock, Norges geologiske undersøkelse, Trondheim, P. 64.
  4. Bonham-Carter, G.F., 1994, Geographic Information Systems for Geoscientists: Modeling with GIS, Pergamon, Ottawa.
  5. Fawcett, T., 2006, An Introduction to ROC Analysis, Pattern Recogn. Lett. 27(8). PP. 861–874.
  6. Lee, S., Kim, Y.S. & Oh, H.J., 2012, Application of a Weights-of-Evidence Method and GIS to Regional Groundwater Productivity Potential Mapping, Environ. Manag., 96(1), PP. 91–105.
  7. Moore, I.D. & Burch, G.J., 1986, Sediment Transport Capacity of Sheet and Rill Flow: Application of Unit Stream Power Theory, Water Res., 22(8), PP. 1350–1360.
  8. Moore, I.D., Grayson, R.B. & Ladson, A.R,. 1991, Digital Terrain Modeling: A Review of Hydrological, Geomorphological and Biological Applications, Hydrol. Process, 5, PP. 3–30.
  9. Ozdemir, A., 2011, GIS-Based Groundwater Spring Potential Mapping in the Sultan Mountains (Konya, Turkey) Using Frequency Ratio, Weights of Evidence and Logistic Regression Methods and their Comparison, J. Hydrol., 411(3–4), PP. 290–308.
  10. Pourghasemi, H.R, Moradi, H.R. & Fatemi Aghda, S.M., 2013, GIS-Based Landslide Susceptibility Mapping with Probabilistic Likelihood Ratio and Spatial Multi-Criteria Evaluation Models (North of Tehran, Iran), Arab J. Geosci., doi: 10.1007/s12517-012-0825.
  11. Pourtaghi, Z.S & Pourghasemi, H.R., 2014, GIS-Based Groundwater Spring Potential Assessment and Mapping in the Birjand Township, Southern Khorasan Province, Iran, Hydrogeol. J., doi: 10.1007/s10040-013-1089-6.
  12. Schmidt, J., Evans, I.S. & Brinknann, J., 2003, Comparison of Polynominal Models of for Land Surface Cuvature Calculation, International Jorunal of Geographical Information Science, V. 178, P. 797–814.
  13. Shuin, Y., Hotta, N., Suzuki, M. & Ogwa, K., 2012, Estimating the Effects of Heavy Rainfall Conditions on Shallow Landslide Using a Distributed Landslide Conceptual Model, Physics and Chemistry of Earth, 49, PP. 44–55.
  14. Singh, A.K. & Prakash, S.R., 2003, An Integrated Approach of Remote Sensing, Geophysics and GIS to Evaluation of Groundwater Potentiality of Ojhala Sub-Watershed, Mirjapur District, U.P., India, http://www.gisdevelopment.net, Accessed on: 25 Aug. 2007.
  15. Wilson, J.P. & Gallant, J.C. (Eds.), 2000, Terrain Analysis: Principles and Applications, Wiley, New York, PP. 51–85.
  16. Weiss, A.D., 2001, Topographic Position and Landforms Analysis, Poster Presentation, ESRI Users Conference, San Diego, CA.