ترکیب تصاویر سنجنده‌های OLI و MODIS به‌منظور تهیة داده‌های بازتابندگی‌ سطحی در مقیاس روزانه با قدرت تفکیک مکانی 30 متر در مناطق دارای تنوع کاربری متفاوت

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دستیار پژوهشی، مؤسسة تحقیقات آب وزارت نیرو، تهران

2 استادیار، مؤسسة تحقیقات آب وزارت نیرو، تهران

3 دانشجوی دکتری سنجش از دور، دانشگاه تهران

چکیده

دسترسی هم‌زمان به تصاویر ماهواره‌ای با قدرت تفکیک زمانی و مکانی بالا در بسیاری از مطالعات ضروری است. این در حالی است که، فقط با استفاده از تصاویر یک سنجنده، این نیاز تأمین نخواهد شد. اما می‌توان با استفاده از تلفیق تصاویر سنجنده‌های گوناگون، که قدرت تفکیک زمانی (مانند MODIS) و مکانی (همانند Landsat) بالا دارند، به این مهم دست یافت. بدین‌ترتیب، هدف اصلی تحقیق حاضر اجرا و ارزیابی میزان دقت یکی از جدیدترین و کارآمدترین مدل‌های ترکیب تصاویر ماهواره‌ای با عنوان ESTRAFM است. برای اجرا و ارزیابی این مدل، دو دورة زمانی (مقطع نخست بین روزهای 204 تا 220 و مقطع دوم بین روزهای 220 تا 236 سال 2016) در نظر گرفته شد. برای اعتبارسنجی نتایج، از تصاویر سنجندة OLI در موزائیک کناری، در جایگاه دادة مشاهداتی (تصویرمبنا)، استفاده شد. نتایج ارزیابی این دو دوره نشان داد میانگین همبستگی باندهای آبی، سبز، قرمز و فروسرخ نزدیکِ تخمین‌زده‌شده با تصویر دریافتی از سنجندة OLI، به‌صورت میانگین در این دو دوره، به‌ترتیب برابر با 90/0، 91/0، 91/0 و 85/0 و میانگین میزان مجذور میانگین مربعات خطا و چهار باند مذکور به‌ترتیب برابر با 025/0، 030/0 ، 036/0 و 049/0 است که، به‌ترتیب، معادل 3/15، 2/16، 5/16 و 7/13 درصد خطا در باندهای مورد نظر است. افزون‌بر این، با توجه به میزان همبستگی بالا (87/0R2=) و مجذور میانگین مربعات خطای ناچیز (056/0RMSE=) بین مقادیر NDVI پیش‌بینی‌شده و NDVI حاصل از باندهای مشاهداتی، می‌توان بیان کرد علاوه‌بر اینکه این مدل در برآورد مقادیر بازتابندگی سطحی دقت مطلوبی دارد؛ می‌توان از آن (مانند NDVI) برای پیش‌بینی میزان محصولات نیز استفاده کرد. براساس نتایج مدل ESTARFM، می‌توان عنوان کرد مقادیر پیش‌بینی‌شدة باندهای گوناگون دقت مناسبی دارند و می‌توان از این مدل برای ترکیب تصاویر، به‌قصد افزایش قدرت تفکیک‌های مکانی و زمانی، استفاده کرد. 

کلیدواژه‌ها


عنوان مقاله [English]

Fusion of MODIS and OLI Images for Estimating Daily Surface Reflectance at 30m Spatial Resolution in Complex Heterogeneous Regions

نویسندگان [English]

  • M Rahimpour 1
  • N Karimi 2
  • R Rouzbahani 2
  • A Rezae 3
1 Research Assistant, Ministry of Energy, Water Research Institute, Tehran
2 Assistant Prof., Ministry of Energy, Water Research Institute, Tehran
3 Ph.D. student, Remote Sensing and GIS Dep., Tehran University
چکیده [English]

Cocurrent access to high spatial and temporal resolution imageries is essential in many studies. However, this will not be provided by using images from one sensor. To achive this goal, the incorporation of different satellites with high spatial (e.g., Landsat) and temporal (e.g., MODIS) images can be used. In present study, one of newest data fusion model, Enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) was evaluated with actual satellite data (OLI image). For emplementation and evaluation of this model, two different periods were selected (the first period selected between the days 204 to 220 and the second one were between the days 220 to 236). For evaluating the obtained results, OLI satellite images were used as a refrence data. Results show that ESTARFM not only improves the accuracy of predicted fine-resolution reflectance, especially for heterogeneous landscapes but it preserves spatial details also. The Coefficient of Determination (R2) of blue, green, red and near-infrared estimation bands with actual satellite data was 0.90, 0.91, 0.91 and 0.85 respectively, and the average Root-Mean-Square Error (RMSE) in four bands are 0.025, 0.030, 0.036 and 0.049 successively. In addition, a comparison between obtained NDVI from estimated reflectance values and observed NDVI, indicates outputs of ESTARFM have acceptable accuracy of (R2 =0.87 and RMSE =0.056). Thereby, this model can be successfully utilized to fusion images for enhancing the spatial and temporal resolution of reflectance. 

کلیدواژه‌ها [English]

  • Data fusion
  • ESTARFM model
  • Surface reflection
  • OLI
  • MODIS
  1. Adams, JB., Smith, M. D. and Johnson, P. E. 1986, Spectral mixture modehing: A new analysis of rock and soil types at the viking lander 1 site. Journal of Geophysical Research: Solid Earth 91(8), PP. 8098-81120.
  2. Aiazzi, B., Alparone, L., Baronti, S. & Garzelli, A., 2002, Context-Driven Fusion of High Spatial and Spectral Resolution Images Based on Oversampled Multiresolution Analysis, IEEE Transactions on Geoscience and Remote Sensing, 40(10), PP. 2300–2312.
  3. Bindhu, V., Narasimhan, B. & Sudheer, K., 2013, Development and Verification of a Non-Linear Disaggregation Method (NL-DisTrad) to Downscale MODIS Land Surface Temperature to the Spatial Scale of Landsat Thermal Data to Estimate Evapotranspiration, Remote Sensing of Environment, 135, PP. 118–129.
  4. Carper, W.J., 1990, The Use of Intensity-Hue-Saturation Transformations for Merging SPOT Panchromatic and Multispectral Image Data, Photogramm. Eng. Remote Sens., 56(4), PP. 457–467.
  5. Chen, B., Ge, Q., Fu, D., Yu, G., Sun, X., Wang, S. & Wang, H., 2010, A Data-Model Fusion Approach for Upscaling Gross Ecosystem Productivity to the Landscape Scale Based on Remote Sensing and Flux Footprint Modelling, Biogeosciences, 7(9), PP. 2943–2958.
  6. Chen, J., Liu, J., Cihlar, J. & Goulden, M., 1999, Daily Canopy Photosynthesis Model through Temporal and Spatial Scaling for Remote Sensing Applications, Ecological Modelling, 124(2), PP. 99–119.
  7. Fu, D., Chen, B., Wang, J., Zhu, X. & Hilker, T., 2013, An Improved Image Fusion Approach Based on Enhanced Spatial and Temporal the Adaptive Reflectance Fusion Model, Remote Sensing, 5(12), PP. 6346–6360.
  8. Gao, F., Masek, J., Schwaller, M. & Hall, F., 2006, On the Blending of the Landsat and MODIS Surface Reflectance: Predicting Daily Landsat Surface Reflectance, IEEE Transactions on Geoscience and Remote Sensing, 44(8), PP. 2207–2218.
  9. Genderen, J.V. & Pohl, C., 1994, Image Fusion: Issues, Techniques and Applications, Strasbourg, France, PP. 18–26.
  10. Geo. Y. and Long D., 2008, Intercomparison of remote sensing-based models for estimation of evapotranpiration and accavacy assessment based on swat. Hydrological Processes, 22(25), pp.4850-4869.
  11. Hilker, T., Wulder, M.A., Coops, N.C., Linke, J., McDermid, G., Masek, J.G., Gao, F. & White, J.C., 2009, A New Data Fusion Model for High Spatial-and Temporal-Resolution Mapping of Forest Disturbance Based on Landsat and MODIS, Remote Sensing of Environment, 113(8), PP. 1613–1627.
  12. Hilker, T., Wulder, M.A., Coops, N.C., Seitz, N., White, J.C., Gao, F., Masek, J.G. & Stenhouse, G., 2009, Generation of Dense Time Series Synthetic Landsat Data through Data Blending with MODIS Using a Spatial and Temporal Adaptive Reflectance Fusion Model, Remote Sensing of Environment, 113(9), 1988-1999.
  13. Hong, S.-h., Hendrickx, J.M. & Borchers, B., 2009, Up-Scaling of SEBAL Derived Evapotranspiration Maps from Landsat (30m) to MODIS (250m) Scale, Journal of Hydrology, 370(1), PP. 122–138.
  14. Jarihani, A.A., McVicar, T.R., Van Niel, T.G., Emelyanova, I.V., Callow, J.N. & Johansen, K., 2014, Blending Landsat and MODIS Data to Generate Multispectral Indices: A Comparison of “INDEX-then-Blend” and “Blend-then-Index” Approaches, Remote Sensing, 6(10), PP. 9213–9238.
  15. Luo, Y., Trishchenko, A.P. & Khlopenkov, K.V., 2008, Developing Clear-Sky, Cloud and Cloud Shadow Mask for Producing Clear-Sky Composites at 250-Meter Spatial Resolution for the Seven MODIS Land Bands over Canada and North America, Remote Sensing of Environment, 112(12), PP. 4167–4185.
  16. Merlin, O., Duchemin, B., Hagolle, O., Jacob, F., Coudert, B., Chehbouni, G., Dedieu, G., Garatuza, J. & Kerr, Y., 2010, Disaggregation of MODIS Surface Temperature over an Agricultural Area Using a Time Series of Formosat-2 Images, Remote Sensing of Environment, 114(11), PP. 2500–2512.
  17. Polh, C. & Van Genderen, J., 1998, Multisensor Image Fusion in Remote Sensing: Concepts, Methods and Applications, International Journal of Remote Sensing, 19(5), PP. 823–854.
  18. Roy, D.P., Ju, J., Lewis, P., Schaaf, C., Gao, F., Hansen , M. & Lindquist, E., 2008, Multi-Temporal MODIS–Landsat Data Fusion for Relative Radiometric Normalization, Gap Filling, and Prediction of Landsat Data, Remote Sensing of Environment, 112(6), PP. 3112–3130.
  19. Shettigara, V., 1992, A Generalized Component Substitution Technique for Spatial Enhancement of Multispectral Images Using a Higher Resolution Data Set, Photogrammetric Engineering and Remote Sensing, 58(5), PP. 561–567.
  20. Tasumi, M., Allen, R.G. & Trezza, R., 2008, At-Surface Reflectance and Albedo from Satellite for Operational Calculation of Land Surface Energy Balance, Journal of Hydrologic Engineering, 13(2), PP. 51–63.
  21. Walker, J., De Beurs, K. & Wynne, R., 2014, Dryland Vegetation Phenology across an Elevation Gradient in Arizona, USA, Investigated with Fused MODIS and Landsat Data, Remote Sensing of Environment, 144, PP. 85–97.
  22. Walker, J., De Beurs, K., Wynne, R. & Gao, F., 2012, Evaluation of Landsat and MODIS Data Fusion Products for Analysis of Dryland Forest Phenology, Remote Sensing of Environment, 117, PP. 381– 393.
  23. Woodcock, C.E. & Strahler, A.H., 1987, The Factor of Scale in Remote Sensing, Remote Sensing of Environment, 21(3), PP. 311–332.
  24. Yocky, D.A., 1996, Multiresolution Wavelet Decomposition I me Merger of Landsat Thematic Mapper and SPOT Panchromatic Data, Photogrammetric Engineering & Remote Sensing, 62(9), PP. 1067–1074.
  25. Zhang, Y., 2004, Understanding Image Fusion, Photogramm. Eng. Remote Sens., 70(6), PP. 657–661.
  26. Zao, S., Yang Y., Qiu, G., Yao, Y., and Li, C., 2010, Remote detection of baresoil moisture using a surface -tenperature-based soil evaporation transfer coefficient. International Journal of Applied Earth observation and Geoin formation 12: 351-358.
  27. Zhu, X., Chen, J., Gao, F., Chen, X. & Masek, J.G., 2010, An Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model for Complex Heterogeneous Regions, Remote Sensing of Environment, 114(11), PP. 2610–262