خوشه‌بندی تصاویر پلاریمتری-اینترفرومتری راداری با استفاده از آنتروپی شانون و الگوریتم میدان تصادفی مارکوف

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد سنجش از دور دانشکده مهندسی ژئودزی وژئوماتیک دانشگاه صنعتی خواجه نصیرالدین طوسی.

2 دانشیار گروه فتوگرامتری و سنجش از دور دانشکده مهندسی ژئودزی وژئوماتیک دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده

داده‌های پلاریمتری-اینترفرومتری راداری، با فراهم‌کردن اطلاعاتی از نوع شدت، دارا‌بودن اطلاعات پلاریمتری دو تصویر و اطلاعات ارتفاعی حاصل از اینترفرومتری، توانایی زیادی در طبقه‌بندی پوشش‌های زمین دارند که این ویژگی‌های سه­گانه در آنتروپی شانون حاصل از این داده‌ها، به تفکیک قابل مشاهده هستند. استفاده همزمان این پارامترها، نقش تکمیل‌کننده‌ای در طبقه‌بندی ارائه می‌کنند، به‌طوریکه حضور اطلاعات اینترفرومتری، باعث افزایش دقت طبقه‌بندی می‌شود. همچنین داده‌های اخذ‌شده از دنیای واقعی، دارای پیوستگی مکانی هستند. بنابراین در این تحقیق، از الگوریتم میدان تصادفی مارکوف به منظور در نظر­گرفتن همسایگی‌های پیکسلی و مجموعه پارامترهای آنتروپی شانون داده‌های پلاریمتری-اینترفرومتری راداری برای طبقه‌بندی استفاده می‌شود. الگوریتم میدان تصادفی مارکوف برای شروع، نیاز به یک نقشه طبقه‌بندی شده اولیه دارد. نقشه طبقه‌بندی شده اولیه با استفاده از بی نظمی و ناهمسانگردی پلاریمتری و پلاریمتری-اینترفرومتری و ادغام کلاس‌های حاصل، براساس شباهت ماتریس همدوسی پلاریمتری-اینترفرومتری مراکز کلاس‌ها، تهیه می‌شود. بررسی کارآیی الگوریتم‌پیشنهادی با استفاده از داده پلاریمتری-اینترفرومتری اخذ‌شده توسط سازمان فضایی آلمان(DLR) انجام می‌شود. در تحقیق حاضر، از شاخص درجه خلوص خوشه‌ها برای ارزیابی عملکرد الگوریتم پیشنهادی و چند الگوریتم دیگر استفاده می‌شود. درجه خلوص کل حاصل از الگوریتم‌پیشنهادی در مقایسه با درجه خلوص حاصل از الگوریتم‌های -ویشارت( )، االگوریتم پیشنهادی –ویشارت( )،  -FCM ویشارت( ) و طبقه­بندی با کمک سه پارامتر آنتروپی شانون و الگوریتم خوشه‌بندی FCM به ترتیب به مقدار 28.48%،  11.38%،  16.60% و19.60%  افزایش پیدا کرده است.

کلیدواژه‌ها


عنوان مقاله [English]

Segmentation of Polarimetric Interferometric Radar Images using Shannon Entropies and Markov Random Field Algorithm

نویسندگان [English]

  • Mohsen Esmail nezhad soltanloo 1
  • Mahmod Reze Sahebi 2
1 Ms.c student of remote sensing in Department of Geomatics, College of Engineering, K.N. Toosi University
2 Associate professor in Department of Geomatics, College of Engineering, K.N. Toosi University
چکیده [English]

Polarimetric Interferometric SAR (POLINSAR) data by providing wealth of information containing intensity, polarimetric and interferometric measurements, have shown many capability of mentioned data in the land cover classification. These three componentes of POLINSAR data could be found independently in the Shannon entropy of POLINSAR data. These components play a complementary role in the classification where the presence of interferometric information improves the classification results. As well as the data acquired form the real world has spatial connectivity so considering the neighboring and spatial connectivity in the classification process is essential and useful. So in this paper Markov Random Field segmentation algorithm has been used for classification of Shannon Entropies of POLINSAR data. In order to provide a Markovian field for the MRF classification, an initialization method has been proposed where classifies the image into 16 classes according to the polarimetric and interferometric entropy and anisotropy and merges the clusters obtained to 8 clusters using equality test of coherency matrices. The purity indices (PI) of the clusters obtained over the POLINSAR data acquired by DLR (German Aerospace center) E-SAR have been used to evaluate the effectiveness of the Entropy based MRF classification. The proposed method has been compared with the  –Wishart (), -Wishart (, -FCM ( and FCM clustering using Shannon Entropy parameters where this comparisons show approximately 28%, 11%, 17% and 20%  increasing in the Purity Indices respectively.

کلیدواژه‌ها [English]

  • Polarimetric Interferometric SAR data
  • Entropy and Anisotropy
  • Shannon Entropy
  • Markov Random Field
  1. Ballester-Berman, J.D. & Lopez-Sanchez, J.M., 2010, Applying the Freeman–Durden decomposition concept to polarimetric SAR interferometry, IEEE Transactions on Geoscience and Remote Sensing 48(1): 466-479.
  2. Chen, S.-W., Wang, X.-S. & Sato, M., 2012, PolInSAR complex coherence estimation based on covariance matrix similarity test, IEEE Transactions on Geoscience and Remote Sensing 50(11): 4699-4710.
  3. Cloude, S.R. & Papathanassiou, K.P., 1998, Polarimetric SAR interferometry, IEEE Transactions on Geoscience and Remote Sensing 36(5): 1551-1565.
  4. Cloude, S.R. & Pottier, E., 1997, An entropy based classification scheme for land applications of polarimetric SAR, IEEE transactions on geoscience and remote sensing 35(1): 68-78.
  5. Conradsen, K., Nielsen, A.A., Schou, J. & Skriver, H., 2003, A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data, IEEE Transactions on Geoscience and Remote Sensing 41(1): 4-19.
  6. D'Hondt, O., Haensch, R. & Hellwich, O., 2018, Supervised classification from TomoSAR data, EUSAR 2018; 12th European Conference on Synthetic Aperture Radar, VDE.
  7. Demonceaux, C. & Vasseur, P., 2006, Markov random fields for catadioptric image processing, Pattern Recognition Letters 27(16): 1957-1967.
  8. Duda, R. O., Hart, P. E. & Stork, D. G., 1973, Pattern classification, Wiley New York.
  9. Ferro-Famil, L., Kugler, F., Potier, E. & Lee, J.-S., 2006, Forest mapping and classification at L-band using Pol-inSAR optimal coherence set statistics, European Conference on Synthetic Aperture Radar (EUSAR), VDE Verlag GmbH.
  10. Ferro-Famil, L., Pottier, E. & Lee, J., 2001, Unsupervised classification and analysis of natural scenes from polarimetric interferometric SAR data, Geoscience and Remote Sensing Symposium, 2001, IGARSS'01. IEEE 2001 International, IEEE.
  11. Ferro-Famil, L., Pottier, E. & Lee, J., 2002, Classification and interpretation of polarimetric interferometric SAR data, Geoscience and Remote Sensing Symposium, 2002. IGARSS'02. 2002 IEEE International, IEEE.
  12. Geman, S. & Geman, D., 1987, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. Readings in Computer Vision, Elsevier: 564-584.
  13. Jager, M., Neumann, M., Guillaso, S. & Reigber, A., 2007, A self-initializing PolInSAR classifier using interferometric phase differences, IEEE Transactions on Geoscience and remote sensing 45(11): 3503-3518.
  14. Kersten, P.R., Lee, J.-S. & Ainsworth, T.L., 2005, Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering, IEEE Transactions on Geoscience and Remote Sensing 43(3): 519-527.
  15. Lee, J.-S. & Pottier, E., 2009, Polarimetric radar imaging: from basics to applications, CRC press.
  16. Lee, J., Grunes, M., Ainsworth, T., Hajnsek, I., Mette, T. & Papathanassiou, K., 2005, Forest classification based on L-band polarimetric and interferometric SAR data, ESA Special Publication.
  17. Li, S. Z., 2009, Markov random field modeling in image analysis, Springer Science & Business Media.
  18. Lu, L., J. Zhang, G. Huang and X. Su, 2016, Land cover classification and height extraction experiments using Chinese airborne X-band PolInSAR system in China, International Journal of Image and Data Fusion 7(3): 282-294.
  19. Luo, H.-M., E.-X. Chen, X.-W. Li, J. Cheng & M. Li, 2010, Unsupervised classification of forest from polarimetric interferometric SAR data using fuzzy clustering, Wavelet Analysis and Pattern Recognition (ICWAPR), 2010 International Conference on, IEEE.
  20. Morio, J., Refregier, P., Goudail, F., Dubois-Fernandez, P.C. & Dupuis, X., 2009, A characterization of Shannon entropy and Bhattacharyya measure of contrast in polarimetric and interferometric SAR image, Proceedings of the IEEE 97(6): 1097-1108.
  21. Neumann, M., Reigber, A. & Ferro-Famil, L., 2005, Data classification based on PolInSAR coherence shapes, Geoscience and Remote Sensing Symposium, 2005, IGARSS'05. Proceedings, 2005 IEEE International, IEEE.
  22. Rendon, E., Abundez, I., Arizmendi, A. & Quiroz, E.M., 2011, Internal versus external cluster validation indexes, International Journal of computers and communications 5(1): 27-34.
  23. Salehi, M., Maghsoudi, Y. & Mohammadzadeh, A., 2018, Assessment of the potential of H/A/Alpha decomposition for polarimetric interferometric SAR data, IEEE Transactions on Geoscience and Remote Sensing 56(4): 2440-2451.
  24. Shimoni, M., Borghys, D., Heremans, R., Perneel, C. & Acheroy, M., 2009, Fusion of PolSAR and PolInSAR data for land cover classification, International Journal of Applied Earth Observation and Geoinformation 11(3): 169-180.
  25. Suliga, M., Deklerck, R. & Nyssen, E., 2008, Markov random field-based clustering applied to the segmentation of masses in digital mammograms, Computerized Medical Imaging and Graphics 32(6): 5.512-02
  26. Wang, X., Chen, E., Li, Z., Yao, W., Li, W. & Li, X., 2013, A Method of Forest Type Classification Using PolInSAR Data, Dragon 2 Final Results and Dragon 3 Kickoff Symposium.
  27. Yan, W., Yang, W., Sun, H. & Liao, M., 2011, Unsupervised classification of PolInSAR data based on Shannon entropy characterization with iterative optimization, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 4(4): 949-959.
  28. Yang, F. & Jiang, T., 2003, Pixon-based image segmentation with Markov random fields, IEEE Transactions on Image Processing 12(12): 1552-1559.