نوع مقاله : علمی - پژوهشی
نویسندگان
1 کارشناس مرکز تحقیقات فضایی، پژوهشگاه فضایی ایران
2 استادیار مرکز مطالعات سنجش از دور و GIS، دانشگاه شهید بهشتی
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
The accurate estimation of crop biomass using satellite data is one of the important challenges in environmental remote sensing. Traditionally, spectral vegetation indices (VIs) derived from spectral reflectances in red (R) and near infrared (NIR) bands have been employed to statistically estimate the crop biomass; however, most of these VIs saturate at some level of LAI. Therefore, most of the recent studies have been investigated on using the reflectance spectra in the red-edge region to overcome the saturation limitation. In order to evaluate the performance of different VIs for the estimation of crop biomass, we conducted five sampling campaigns during the growing season of silage maize in Magsal, Qazvin and we totally collected 182 silage maize biomass samples. Then, ten spectral indices from the time series of Sentinel-2 images of 2017 which were simultaneous with our campaigns were computed and employed to statistically estimate the silage maize biomass. The silage maize biomasses were evaluated with the field measurements. The results showed that index with and the lowest root mean square error () was the best index to estimate silage maize biomass. Moreover, this work also showed that Sentinel-2 satellite which delivers high spatial resolution images of the red-edge band can be employed to accurately estimate the silage maize biomasses. The accurate estimation of crop biomass using satellite data is one of the important challenges in environmental remote sensing. Traditionally, spectral vegetation indices (VIs) derived from spectral reflectances in red (R) and near infrared (NIR) bands have been employed to statistically estimate the crop biomass; however, most of these VIs saturate at some level of LAI. Therefore, most of the recent studies have been investigated on using the reflectance spectra in the red-edge region to overcome the saturation limitation. In order to evaluate the performance of different VIs for the estimation of crop biomass, we conducted five sampling campaigns during the growing season of silage maize in Magsal, Qazvin and we totally collected 182 silage maize biomass samples. Then, ten spectral indices from the time series of Sentinel-2 images of 2017 which were simultaneous with our campaigns were computed and employed to statistically estimate the silage maize biomass. The silage maize biomasses were evaluated with the field measurements. The results showed that index with and the lowest root mean square error () was the best index to estimate silage maize biomass. Moreover, this work also showed that Sentinel-2 satellite which delivers high spatial resolution images of the red-edge band can be employed to accurately estimate the silage maize biomasses.
کلیدواژهها [English]