مدل‌سازی توزیع غلظت آلاینده‌های NO2 و O3 با توان تفکیک مکانی مناسب با استفاده از تلفیق داده‌‌های زمینی و ماهواره‌‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه مهندسی نقشه‌برداری، دانشکدة عمران و حمل‌و‌نقل، دانشگاه اصفهان، اصفهان، ایران

2 استادیار گروه مهندسی نقشه‌برداری، دانشکدة عمران و حمل‌ونقل، دانشگاه اصفهان، اصفهان، ایران

چکیده

سابقه و هدف: آلودگی هوا یکی از مهم‌‌ترین بحران‌‌هایی است که امروزه اکثر کشور‌‌ها با توجه به پیشرفت صنعت و فنّاوری با آن رو‌‌به‌‌رو هستند. کشور ایران و به‌‌ویژه شهر تهران نیز از این پدیده مستثنا نیست. تأثیر آلودگی هوای شهری بر محیط‌زیست و سلامت انسان نگرانی‌های فزاینده‌ای را برای محققان، سیاست‌گذاران و شهروندان برانگیخته است. برای کاهش تأثیرات منفی آلودگی هوا بر سلامت، اندازه‌‌گیری به‌موقع آن در وضوح زمانی و مکانی بالا اهمیت فراوانی دارد. ازطرفی، ایستگاه‌‌های سنجش آلودگی هوا در سطح شهر به‌رغم صحت بالا در اندازه‌‌گیری آلاینده‌‌ها، به‌دلیل‌‌ محدودیت‌های زمانی و مکانی و اندازه‌‌گیری نقطه‌‌ای قابلیت تعمیم‌‌پذیری ندارند. راهکار مکمل و بعضاً جایگزین استفاده از سنجش‌ازدور و داده‌‌های ماهواره‌‌ای است که با توجه به هزینة بهینه و پوشش وسیع روشی مناسب برای پایش آلودگی هوا به شمار می‌‌رود. آلاینده‌‌های دی‌‌اکسید نیتروژن (NO2) و ازن (O3) از مهم‌‌ترین شاخص‌‌‌‌های آلودگی هوا هستند که در این پژوهش برای مدل‌‌سازی توزیع غلظت آن‌‌ها در سطح شهر تهران با توان تفکیک مکانی برابر (تقریباً یک کیلومتر) و صحتی بالاتر از داده‌‌های ماهواره‌‌ای تلاش خواهد شد.
 
مواد و روش‌‌ها: به‌منظور مدل‌‌سازی توزیع غلظت دو آلاینده NO2 و O3 با دقت و توان تفکیک مناسب، از روش نوآورانة مبتنی بر روش درون‌یابی کریجینگ استفاده شده است. این روش با بهره‌‌گیری هم‌زمان از مزایای داده‌‌های ایستگاهی سنجش آلودگی از شرکت کنترل کیفیت هوای تهران، که با بهره‌گیری از 21 ایستگاه سنجش آلودگی هوای فعال که در نقاط مختلف شهر تهران مستقر است، بالاترین دقت در اندازه‌گیری پارامترها را دارند و داده‌های ماهواره‌‌ی سنتینل 5P، که از توان تفکیک مکانی بالا برخوردارند، مدل‌‌سازی را انجام می‌‌دهد. با توجه به قابلیت‌های سامانة گوگل ارت انجین، نقشه‌‌های توزیع غلظت دو آلاینده در کل مناطق 22‌‌گانة شهر تهران به‌صورت ماهانه و همچنین داده‌‌های ماهواره‌‌ای نقطه‌‌ای دو آلاینده در مختصات مکانی ایستگاه‌‌های زمینی، به‌صورت ساعتی، روزانه و ماهانه به‌مدت یک ‌‌سال از تاریخ 1 فروردین 1400 تا 1 فروردین 1401 در سامانة گوگل ارت تهیه و جمع‌‌آوری شد. پس از بررسی همبستگی بین داده‌‌های ماهواره‌‌ای و داده‌‌های ایستگاه‌‌های سنجش زمینی و حذف بایاس از داده‌‌های ماهواره‌‌ای، مراحل مختلف مدل‌‌سازی نوآورانه درون‌یابی کریجینگ به‌منظور مدل‌سازی توزیع غلظت دو پارامتر به کار گرفته شد.
 
نتایج و بحث: به‌منظور صحت‌‌سنجی داده‌‌های خروجی حاصل از مدل‌‌سازی توزیع آلاینده‌‌ها، 70 درصد ایستگاه‌‌ها به عنوان داده‌‌های آموزش (Train) و 30 درصد ایستگاه‌‌ها به‌عنوان داده‌‌های آزمون (Test) انتخاب شدند. این نقاط به‌صورت تصادفی و برای هر ماه از سال 1400 انتخاب شدند. مدل‌‌سازی نقشة نهایی توزیع آلاینده‌‌ها با استفاده از داده‌‌های آموزش و صحت‌‌سنجی مدل‌‌سازی انجام‌شده با استفاده از داده‌‌های آزمون انجام شد. این ‌‌کار با استفاده از محاسبة میانگین خطای بین داده‌‌های پیش‌‌بینی‌شده توسط مدل و داده‌‌های ایستگاهی مستخرج از شرکت کنترل کیفیت هوای تهران (با واحد ppb) و همچنین محاسبة شاخص RMSE صورت گرفته است. نتایج نشان می‌دهد که میانگین خطای ماهانة مدل پیشنهادی، نسبت به داده‌‌های ماهواره سنتینل 5P از 16.8 به 1.73 درصد برای آلایندة NO2 و از 21.9 به 2.53 درصد برای آلایندة O3  کاهش یافته است. همچنین خطای جذر میانگین مربعات (RMSE) این مدل نسبت به داده‌‌های ایستگاهی سنجش آلودگی برای آلایندة NO2 و O3 به‌ترتیب برابر با ppb 2.79 و ppb 0.86 است. این در حالی است که در حالت مشابه شاخص RMSE نقشة خروجی ماهواره سنتینل 5P نسبت به داده‌‌های ایستگاهی سنجش آلودگی برای آلایندة NO2 و O3 به‌ترتیب برابر با ppb 10.083 و ppb 6.238 است.
نتیجه‌‌گیری: با توجه به اینکه مدل تلفیقی پیشنهادی عملکرد بسیار مطلوبی در مدل‌‌سازی غلظت توزیع غلظت آلاینده‌‌های مورد نظر در طول سال 1400 با دقت و توان تفکیک مکانی تقریباً یک کیلومتری داشته است، به‌کارگیری هم‌زمان داده‌‌های ماهواره‌‌ای و زمینی در برآورد آلاینده‌‌ها توصیه می‌شود. 

کلیدواژه‌ها


عنوان مقاله [English]

Modeling the concentration distribution of NO2 and O3 pollutants with an appropriate spatial resolution by combining ground and satellite data

نویسندگان [English]

  • Amir Hadian 1
  • Mina Moradizadeh 2
1 MSc student, Department of Geomatics, Faculty of Civil and Transportation Engineering, University of Isfahan, Isfahan, Iran
2 Assistant Professor, Department of Geomatics, Faculty of Civil and Transportation Engineering, University of Isfahan, Isfahan, Iran
چکیده [English]

Introduction: Air pollution represents one of the most important challenges currently facing the majority of countries, largely as a consequence of the advancement of industry and technology. . It is evident that the country of Iran, and in particular  the city of Tehran, is not exempt from this phenomenon. The impact of urban air pollution on the environment and human health has raised increasing concerns among researchers, policy makers, and citizens. In order to minimize  the adverse effects on human health, it is of paramount importance to monitor  air pollution at high temporal and spatial resolution. On the other hand, air pollution measurement stations in the urban areas, despite their high accuracy in pollutant measurement, are not generalisable due to temporal and spatial limitations and point measurement. An alternative solution is the use of remote sensing and satellite data, which is a suitable method for monitoring air pollution due to the optimal cost and wide coverage. Nitrogen dioxide (NO2) and ozone (O3) pollutants are among the most important indicators of air pollution. Therefore, the objective of this research,  is to develop a for the  concentration distribution of these pollutants inTehran with an equal spatial resolution (approximately one kilometer) and a higher level of accuracy than satellite data.
Material and methods: In order to model the concentration distribution of two pollutants, NO2 and O3, with appropriate accuracy and resolution, an innovative method based on the kriging interpolation method has been  employed. This modeling method has been developed by simultaneously utilizing the advantages of both pollution measurement station data and high resolution Sentinel-5P satellite data. The former comprises 21 active air pollution measurement stations that have been identified as offering the highest accuracy in measuring parameters in different parts of Tehran. The Google Earth Engine system, has been employed to generate concentration distribution maps of the two pollutants in all 22 districts of Tehran on a monthly basis. Additionally, the system has been used to generate point satellite data of the two pollutants in the spatial coordinates of the ground stations on an hourly, daily and monthly basis. The data was prepared and collected in the Google Earth system over the course of one year, from 1 April 1400 to 1 April 1401. Following the correlation between the satellite data and the ground measurement station data and removal of the bias from the satellite data, different stages of innovative kriging interpolation modeling were employed to model the concentration distribution of the two parameters.
Results and discussion: In order to validate the output data from pollutant distribution modeling, 70% of the stations were selected as training data (Train) and 30% of the stations were selected as test data (Test). The points were randomly selected for each month of the year. The final modeling of pollutant distribution was conducted using the training data with the model subsequently validated using the test data. Validation was conducted using both the average error between the predicted data by the model and the station data extracted from the Tehran Air Quality Control Company (in ppb units) and also calculating the RMSE index. The results demonstarte that the average monthly error of the proposed model has decreased from 16.8 to 1.73% for NO2 pollutant and from 21.9 to 2.53% for O3 pollutant compared to the data of the Steinel 5P satellite. Additionally, the root mean square error (RMSE) of this model is equal to 2.79 ppb and 0.86 ppb for NO2 and O3 pollutant, respectively. In a comparable scenario, the RMSE index of the Sentinel 5P satellite output map in relation to the pollution measurement station data for NO2 and O3 pollutants is 10.083 ppb and 6.238 ppb, respectively.
Conclusion: Considering that the proposed integrated model has performed very well in modeling the concentration distribution of the two pollutants throughout the year with an accuracy and spatial resolution of almost one kilometer, it is recommended that the simultaneous use of satellite and ground data be employed in the estimation of pollutants.

کلیدواژه‌ها [English]

  • Air pollution
  • Traffic pollutants
  • Kriging interpolation
  • Sentinel5P satellite
  • NO2 pollutant
  • O3 pollutant
Ahmadi S., M. Roshani, "Tehran air and noise quality report in 2021," Envi. Res., 2021.
Alavi C., S. Kianejad, and S. A. Sabbagh, “Preparation of Air Pollution Mapping by Interpolating Kriging Method in GIS, Case Study: Tehran Metropolis,” J. Urnan Ecol. Res., vol. 10, no. 20, pp. 171–184, 2020, doi: https://doi.org/10.30473/grup.2020.7086.
Amani M. et al., “Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 13, pp. 5326–5350, 2020, doi: https://doi.org/10.1109/JSTARS.2020.3021052.
Bahari R.A., A. R. Abaspour, and P. Pahlavani, “Zoning of Particulate Matters (PM) Pollution Using Local Statistical Models in GIS (Case Study: Tehran Metropolisies),” ISSGE, vol. 5, no. 3, pp. 165–174, Feb. 2016.
Basu, R., T. J. Woodruff, J. D. Parker, L. Saulnier, and K. C. Schoendorf, “Comparing exposure metrics in the relationship between PM2.5 and birth weight in  California.,” J. Expo. Anal. Environ. Epidemiol, vol. 14, no. 5, pp. 391–396, Sep. 2004, doi: https://doi.org/10.1038/sj.jea.7500336.
Berman, J.D., P. N. Breysse, R. H. White, D. W. Waugh, and F. C. Curriero, “Evaluating methods for spatial mapping: Applications for estimating ozone concentrations across the contiguous United States,” Environ. Technol. Innov., vol. 3, pp. 1–10, 2015, doi: https://doi.org/10.1016/j.eti.2014.10.003.
Bilgili, F., E. Koçak, and Ü. Bulut, “The dynamic impact of renewable energy consumption on CO2 emissions: A revisited Environmental Kuznets Curve approach,” Renew. Sustain. Energy Rev., vol. 54, pp. 838–845, 2016, doi: https://doi.org/10.1016/j.rser.2015.10.080.
Borsdorff T. et al., “Carbon monoxide air pollution on sub-city scales and along arterial roads detected by the Tropospheric Monitoring Instrument,” Atmos. Chem. Phys., vol. 19, no. 6, pp. 3579–3588, 2019, doi: https://doi.org/10.5194/acp-19-3579-2019.
Coburn T.C., “Statistical Methods for Spatial Data Analysis,” Math. Geol., vol. 38, no. 4, pp. 511–513, 2006, doi: https://doi.org/10.1007/s11004-006-9035-y.
De Kok, T. M. C. M., H. A. L. Driece, J. G. F. Hogervorst, and J. J. Briedé, “Toxicological assessment of ambient and traffic-related particulate matter: A review of recent studies,” Mutat. Res. Mutat. Res., vol. 613, no. 2, pp. 103–122, 2006, doi: https://doi.org/10.1016/j.mrrev.2006.07.001.
Eskes H., J. V. Geffen, F. Boersma, K. Eichmann, A. Apituley, M. Pedergnana, M. Sneep, J. P. Veefkind, and D. Loyola, “Sentinel-5 precursor/TROPOMI Level 2 Product User Manual Nitrogendioxide,” Royal Netherlands Meteorological Institute, no. 4.1.0, p. 164, 2022.
Fallahizadeh, S., M. R. Zarei, N. Karami, H. Foruzan, M. Alamdari, and I. Parseh, “Quantification of Health Effects of Ambient PM10 in Gachsaran City, Iran, in Year 2015, Using the AirQ Software,” Heal. Syst. Res., vol. 14, no. 1, 2018, doi: https://10.22122/jhsr.v14i1.3127.
Ghanbari. A., V. Isazadeh, "Modeling the concentration of ozone and nitrogen oxides in GIS environment and comparing their concentrations with Sentinel-5 product in Google Earth Engine - Study area: Tehran," Sci. Res. Q. Geogr. Data (SEPEHR), vol. 30, no. 118, pp. 247-261, 2021, doi: https:// 10.22131/sepehr.2021.246154.
Ghannadi M.A., M. Shahri, and A.R. Moradi, “Air pollution monitoring using Sentinel-5 (Case study: Big industrial cities of Iran),” Environ. Sci., vol. 20, no. 2, 2022, doi: https://10.52547/envs.2022.1026.
Heger M.P., and M. Sarraf, “Air Pollution in Tehran: Health Costs, Sources, and Policies,” 2018.
Kaffash Charandabi, N., A. A. Alesheikh, and M. karimi, “Using Autranking Methods for Optimum Setting of Air Pollution Monitoring Stations,” J. Environ. Stud., vol. 38, no. 2, pp. 69–82, 2012, doi: https://10.22059/jes.2012.29101.
Lockhart, D. L., M. Vaganay, S. MacIntyre, and P. Joseph, “A meta-analysis of the impact of traffic-related    air pollution on health and the factors affecting exposure,” Artif. Intell. Rev., vol. 198, pp. 193–204, 2015, doi: https://doi:10.2495/AIR150161.
Mihăiţă, A. S., L. Dupont, O. Chery, M. Camargo, and C. Cai, “Evaluating air quality by combining stationary, smart mobile pollution monitoring and data-driven modelling,” J. Clean. Prod., vol. 221, pp. 398–418, 2019, doi: https://doi.org/10.1016/j.jclepro.2019.02.179.
Miri, M., M. T. Ghaneian, A. Gholizadeh, M. Y. Avval, and A. Nikoonahad, “Assessment of Spatial Analysis Methods in Mapping of Air Pollution in Mashhad,” J. Environ. Heal. Eng., vol. 3, no. 2, pp. 143–154, 2016, doi: https://10.18869/acadpub.jehe.3.2.143.
Najafpoor, A.A., A. Jonidi, and sina dousti, “Trend analysis of Air Quality Index criteria pollutants (CO, NO2, SO2, PM10 and O3) concentration changes in Tehran metropolis and its relationship with meteorological data, 2001-2009,” J. Heal. F., vol. 3, 2015.
Nameni A., S. M. Tayebi Sani, A. Fahimi Nejad, and B. Morsal, “Investigating the Distribution and Emission of Air Pollutants in Relation to the Location of Urban Sports Complexes Using GIS,” Strateg. Stud. YOUTH Sport., vol. 18, no. 46 #T001420, pp. 137–158, 2020.
Omrani H., and Bilel Omrani and Benoit Parmentier and Marco Helbich, “Spatio-temporal data on the air pollutant nitrogen dioxide derived from Sentinel satellite for France,” "Data Br., 2020, doi: https://doi.org/10.1016/j.dib.2019.105089.
Peng X., K. Wang, and Q. Li, “A new power mapping method based on ordinary kriging and determination of optimal detector location strategy,” Ann. Nucl. Energy, vol. 68, pp. 118–123, 2014, doi: https://doi.org/10.1016/j.anucene.2014.01.002.
Safari. H., "Comparison of two interpolation methods IDW and Kriging" Shahrnegar, vol. 7, no. 40, 2007.
Sharipour Z., A.  AkbariBidokhti, "Investigating the situation of NO 2 in the troposphere of Iran during the years 2004 to 2012," Environ. Sci., vol. 40, no. 1, pp. 65-78, 2013.
Sharipour Z., A.  AkbariBidokhti, "Investigation of spatial and temporal distributions of air pollutants over Tehran in cold months of 2011-2013," J. Environ. Sci. Tech., vol. 16, no. 1, pp. 146-166, 2014.
 
Sohrabinia M., and A. M. Khorshiddoust, “Application of satellite data and GIS in studying air pollutants in Tehran,” Habitat Int., vol. 31, no. 2, pp. 268–275, 2007, doi: https://doi.org/10.1016/j.habitatint.2007.02.003.
Soleymani F., A. Malekhoseini, "The Zoning of Air Quality in 22 Districts of Tehran Using GIS and Geostatistical Methods," Environmental Based Territorial Planning, vol. 14, no. 52, pp. 19-44, 2021.
Veefkind J.P. et al., “TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications,” Remote Sens. Environ., vol. 120, pp. 70–83, 2012, doi: https://doi.org/10.1016/j.rse.2011.09.027.
You W., Z. Zang, X. Pan, L. Zhang, and D. Chen, “Estimating PM2.5 in Xi’an, China using aerosol optical depth: A comparison between the MODIS and MISR retrieval models,” Sci. Total Environ., vol. 505, pp. 1156–1165, 2015, doi: https://doi.org/10.1016/j.scitotenv.2014.11.024.
Zhang K. and S. Batterman, “Air pollution and health risks due to vehicle traffic,” Sci. Total Environ., vol. 450–451, pp. 307–316, Apr. 2013, doi: https://10.1016/j.scitotenv.2013.01.074.