نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشجوی دکتری، سنجش از دور و سیستم اطلاعات جغرافیایی، گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده منابع طبیعی و محیط زیست، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران
2 استادیار، گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده منابع طبیعی و محیط زیست، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران
3 استاد تمام، گروه مهندسی ژئودزی و ژئوماتیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران
4 دکتری، رشته مهندسی عمران، نقشهبرداری، استادیار، گروه عمران، مهندسی آب و محیط زیست، دانشگاه شهید بهشتی، تهران، ایران
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
Introduction: Intelligent emergency response systems utilize modern technologies such as the Internet of Things (IoT) to enhance the performance of emergency response units. These systems are designed to improve service quality, reduce costs, and increase monitoring of the emergency response process. Key objectives include optimizing emergency response routes through communication with objects and collecting spatial data. Utilizing IoT-based routing models enables optimizing emergency response routes and enhancing the overall user experience. In essence, these systems leverage data collected by IoT to enhance the emergency response process. Intelligent emergency response systems play a crucial role in improving the efficiency of emergency response units and elevating service levels in emergencies. These systems are readily available and enhance productivity and efficiency in emergencies.
Materials and Methods: A spatial data infrastructure has been developed to integrate the system and enhance emergency response efforts, providing critical capabilities for improving emergency medical services. This infrastructure includes a portal that accurately displays the optimal route from the incident location to the medical center on a map, assisting the medical team in quickly and efficiently reaching the injured individual. Additionally, this portal enables the transfer of sensor information, such as vital signs of the injured person, to the physician's mobile phone in the ambulance via Bluetooth. This allows the information to be shared simultaneously for further assessment, enabling quick and accurate assistance in emergencies. This system increases efficiency and speed in responding to emergencies, providing rapid and optimal access to medical services. In summary, this spatial data infrastructure has significantly improved the performance of emergency medical response and facilitated the delivery of enhanced and optimized services in emergencies.
Results and Discussion: Medical centers prioritize healthcare and treatment. They employ an online hierarchical weighting model to ascertain these priorities and enhance the efficiency of resource allocation processes. This model helps optimize resource allocation based on real-time health information of the injured individuals. In a trial case, an injured person was successfully treated in District 5 of Tehran. The efficient use of IoT and spatial data infrastructure enabled this medical center to enhance and optimize its healthcare services. These findings underscore the significance of integrating spatial information, medical data, and IoT technology to advance healthcare services and elevate the quality of treatment.
Conclusion: Traditional emergency response systems operate primarily based on outdated mechanisms and lack modern technologies, including IoT and spatial data integration. Consequently, these systems may encounter challenges such as delays in dispatching emergency personnel to the incident location and a lack of accurate and rapid patient information. Incorporating modern technologies like artificial intelligence, IoT, and geographic information systems can address the challenges faced by traditional emergency response systems. These technologies enable faster and more efficient crisis responses and assist organizations, such as crisis management agencies, in making better resource allocation decisions during emergencies, thereby improving overall performance. By utilizing data collected through these technologies, emergency organizations can significantly enhance their response to emergencies, reducing time, financial, and human costs. Overall, this new approach to emergency response systems enables better adaptability in facing various crises and improves emergency response efficiency.
کلیدواژهها [English]