برآورد بافت و مقادیر اکسیدهای آزاد آهن خاک با استفاده از باندهای ماهوارة لندست 8 و تحلیل رگرسیون

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه محیط‌زیست، دانشکدة منابع طبیعی، دانشگاه کردستان، سنندج، ایران

2 دانشیار گروه محیط‌زیست، دانشکدة منابع طبیعی، دانشگاه کردستان، سنندج، ایران

3 استادیار گروه محیط‌زیست، دانشکدة منابع طبیعی، دانشگاه کردستان، سنندج، ایران

چکیده

این پژوهش با هدف برآورد ویژگی‌های خاک، با استفاده از باندهای ماهوارة لندست 8، در بخشی از زمین‌های زراعی دشت قروه‌ـ دهگلان در غرب ایران انجام شد. در مجموع، از 107 نقطة محدودة مطالعاتی، از عمق 15-0 سانتی‌متری نمونة خاک تهیه و ویژگی‌های فیزیکوشیمیایی این نمونه‌ها در آزمایشگاه اندازه‌گیری شد. برای استخراج اطلاعات از تصویر ماهوارة لندست 8 و پس از اعمال ماسک پوشش گیاهی، مقادیر DOS باندهای 7-1 برای نقاط نمونه‌برداری استخراج شد. به‌منظور تعیین رابطة بین ویژگی‌های خاک و ارزش رقومی باندهای لندست 8، تحلیل همبستگی، رگرسیون خطی گام‌به‌گام و رگرسیون مؤلفة اصلی به‌کار رفت. اعتبارسنجی تحلیل رگرسیون‌ها با استفاده از دو پارامتر ضریب تعیین و ریشة میانگین مربعات خطا ارزیابی شد. نتایج نشان داد که همبستگی مثبت و معنی‌داری بین مقادیر شن و اکسیدهای آزاد آهن خاک و همبستگی منفی و معنی‌داری بین رس و سیلت خاک، با ارزش رقومی بیشتر باندهای لندست 8، وجود دارد. بین غلظت فلزات سنگین و ارزش رقومی در باندهای مرئی و مادون قرمز نزدیک، همبستگی معنی‌داری مشاهده نشد و تحلیل‌های رگرسیون نیز، در برآورد ویژگی‌های خاک محدودة مطالعاتی، کارآیی مورد قبولی نداشت. با توجه به نتایج، به‌نظر می‌رسد که می‌توان از تصاویر ماهوارة لندست 8 به‌منظور برآورد بافت خاک و مقادیر اکسیدهای آزاد آهن خاک، در محدودة مورد مطالعه، استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of Soil Texture and Amount of Free Iron Oxides Using Landsat 8 Satellite Bands and Regression Analysis

نویسندگان [English]

  • Rozhin Moradi 1
  • Bubak Souri 2
  • Marzieh Reisi 3
1 M.Sc. Student, Dep. of Environmental Sciences, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran
2 Associate Prof., Dep. of Environmental Sciences, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran
3 Assistant Prof., Dep. of Environmental Sciences, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran
چکیده [English]

The aim of this study was to estimate soil properties using Landsat 8 satellite bands in part of farmlands of Qorveh-Dehgolan plain in western Iran. Soil sampling was conducted at a total number of 107 points from 0-15cm depth throughout the study area and their physicochemical properties were measured in the laboratory. In order to extract information from the Landsat 8 satellite image following application of the vegetation mask; DOS values ​​for bands 1-7 were extracted for the sampling points. Correlation Analysis, Stepwise Linear Regression and Principal Component Regression were used to determine the relationship between soil properties and digital value of Landsat 8 bands. Validation of Regression Analysis was evaluated using two parameters of Coefficient of Determination and Root Mean Square Error. The results showed that there was a positive and significant correlation between the digital value of most Landsat8 bands to the amounts of sand and free iron oxides in the soil but a negative and significant of it to amounts of clay and silt in the soil. There was no significant correlation between heavy metals concentration and digital value in visible and near infrared bands while Regression Analysis did not provide acceptable performance in estimating soil properties of the study area. According to the obtained results, it seems that Landsat 8 satellite images can be used to estimate the soil texture and the amount of free iron oxides across the study area.

کلیدواژه‌ها [English]

  • Soil Properties
  • Ghorveh-Dehgolan Plain
  • Soil Sampling
  • Remote Sensing

Asadzadeh, F., Khosraviaqdam, K., Yaghmaeian Mahabadi, N., & Ramezanpour, H., 2019, Sapatial Variation of Mineral Particles of the Soil using Remote Sensing Data and Geostatistics to the Soil Texture Inter-polation, Water and Soil, 32(6), 1207-1222.

Asmaryan, S.G., Muradyan, V., Sahakyan, L., Saghatelyan, A., Warner, T., 2014, Development of remote sensing methods for assessing and mapping soil pollution with heavy metals, Global Soil Map: Basis of the global spatial soil information system, 429-432.
Bolan, N.S., Adriano, B.C., Mani, P.A., 2003, Immobilization and phytoavailibility of cadmium in variable charge soils. II. Effect of lime addition, Plant and Soil, 251: 187-198.
Broge, N.H., Thomsen, A.G., Greve, M.H., 2004, Prediction of topsoil organic matter and clay content from measurements of spectral reflectance and electrical conductivity, Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 54(4), 232-240.
 
Campbell, J.B., Wynne, R.H., 2011, Introduction to Remote Sensing, Fifth Edition Division of Guilford Publications, New York.
Day, P.R., 1965, Particle fractions and particle-size analysis. In: Black CA (ed) Methods of soil analysis: Part 1. American Society of Agronomy, Madison, United States.
Dematte, J.A.M., Garcia, G.J., 1999, Alteration of soil properties through a weathering sequence as evaluated by spectral reflectance, Soil Science Society of America Journal, 63(2), 327-342.
Duda, A.M., Nawar, M., 1996, Implementing the World Bank, s water resources management policy: A priority on toxic substance from nonpoint sources, Water Science and Technology, 33: 45-51.
Ebrahimi, Z., Vali, A., Ghazavi, R., Haghparast, H., 2012, Investigation of soil texture particles and geometric mean particle diameter effects on soil surface of spectral reflectance (case study: Yazd), Journal of Quantities Geomorphology Researches, 3, 115-128.
Gilmore, S., Saleem, A., Dewan, A., 2015. Effectiveness of DOS (Dark-Object Subtraction) method and water index techniques to map wetlands in a rapidly urbanizing megacity with Landsat 8 data. 100-108
Grossl, P.R., Sparks, D.L., 1995, Evaluation of contamination adsorption/ desorption on goethite using pressure-jump relaxation kinetics, Geoderma, 67: 87-101.
Hendershot, W.H., Lalande, H., Reyes, D., MacDonald, J.S., 2008. Trace element assessment. In Carter, M.R., and E.G. Gregorich (eds). Soil Sampling and Methods of Analysis. 2nd ed. Canadian Society of Soil Science, CRC Press and Taylor & Francis Group. Oxford, UK.
ISRIC, 1993, Procedures for soil analysis. International Soil Reference and Information center.
Kirpichtchikova, T.A., Manceau, A., Spadini, L., Panfili, F., Marcus, M.A., Jacquet, T., 2006, Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modeling, Geochimica et Cosmochimica Acta, 70(2), 2120-2153.

Leghaei, H., Pahmanpour, H., 2013, Urban Ecology, University of Tehran, Tehran, Iran.

Liao, K., Shaohui, X.U., Jichun, W.U., Zhu, Q., 2013, Spatial estimation of surface soil texture using remote sensing data, Soil Science and Plant Nutrition, 59, 488-500.
Matinfar, H., Ghodoosifard, F., 2016, Evaluation of Super Spectral Images to Estimate Pb Pollution in Arable Soils, Geographic Space, 16(54), 261-282.

Mokhtari Garchekani, P., Ayoubi, Sh.A., Mosadeghi, M.R., Malekian, M., 2011, Effects of land use and slope gradient on soil organic carbon pools in particle-size fractions and some soil physico-chemical properties in hilly regions, western Iran, Soil Management and Sustainable Production, 1(1), 23-41.

Nael, M., Khademi, H., Jalalian, A., Schulin, R., Kalbasi, M., Sotohian, F., 2009. Effect of geo-pedological conditions on the distribution and chemical speciation of selected trace elements in forest soils of western Alborz, Iran, Geoderma, 152:157-170.

Noorian, M., Delawar, M.A., 2012, Geo-Statistical Evaluation of Total Cadmium Concentration in Dizajabad Region, Zanjan Province, Sixth National Conference of Environmental Engineering.

Page, A.L., Miller, R.H., Keeney, D.R., Baker, D.E., Ellis, R., Rhoades, J.D., 1982, Methods of soil analysis, EDS, 631(41): 2-9.

Pourkhiz, I., 2011, Application of Geographical Information System (GIS) for more Precise Management on Farms and Crops, National Conference of New Achievements on Cultivation, pp: 1-7.

Prasad, K., Gorai, A.K., Goya, L.P., 2016, Development of ANFIS modelsfor air quality forecasting and input optimization for reducing the computational coast and time, Atmos Environ, 128: 246–262.
Shi, T., Chen, Y., Liu, Y., Wu, G., 2014, Visible and near-infrared reflectance spectroscopy-An alternative for monitoring soil contamination by heavy metals, Journal of Hazardous Materials, 265, 166-176.
Shirazi, M., Matinfar, M., Nematolahi, M.J., Zehtabiyan, G.R., 2011, Comparison of information content of aster and LISS-III Bands in Arid Areas (Case study: Damghan Playa), Journal of Applied RS and GIS Techniques in Natural Resource Science, 1(1), 31-49.
Sobrino, J. A., Jimenez-Munoz, J.C., Soria, G., Romaguera, M., Guanter, L., Moreno, J., Plaza, A., Martinez, P., 2008, Land surface emissivity retrieval from different VNIR and TIR sensors, IEEE Transaction of Geoscience Remote Sensing, 46,316–327.
Sridhar, B.M., Vincent, R.K., Witter, J.D., Spongberg, A.L., 2009, Mapping the total phosphorus concentration of biosolid amended surface soils using landsat TM data, Science of the Total Environment, 407: 2894-2899.
Stenberg, B., Rossel, R. A.V., Mouazen, A.M., Wetterlind, J., 2010, Visible and near infrared spectroscopy in soil science, In Advances in agronomy, 107, 163-215.
Sullivan, D.G., Shaw J., Rickman, D., 2005, IKONOS imagery to estimate surface soil property variability in two Alabama physiographies, Soil Science Society of America Journal, 69(6), 1789-1798.
Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J., 2012, Heavy metal toxicity and the environment, In Molecular, Clinical and Environmental Toxicology, 133-154.

Touzandejani, M., Soffianian, A., Mirghafari, N., 2018, Arsenic Contamination Risk Assessment in Hamedan Plain-spring Using the Fuzzy Method,Journal of Water and Soil Science, 22(2), 53-66.

USGS, 2017, United States Geological Survey. Available from http: //glovis.usgs.gov/
Vincen, R.K., 1997, Fundamentals of geological and environmental remote sensing (Vol. 366). Upper Saddle River, NJ: Prentice Hall.
Walkley, A., Black, I.A, 1934, An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method, Soil Sci, 37:29-37.
Wang, L., Zhang, N., Liu, Z., Sun, Y., Ji, D., Wang, Y., 2014, The influence of climate factors, meteorological conditions, and boundary-layer structure on severe haze pollution in the Beijing-Tianjin-Hebei region during January 2013, Advances in Meteorology, 2014.
Wetterlind, J., Stenberg, B., 2010, Near-infrared spectroscopy for within-field soil characterization: small local calibrations compared with national libraries spiked with local samples, European Journal of Soil Science, 61(6), 823-843.
Wu, C. G., Zhou, Z. X., Xiao, W. F., Wang, P. C., Wang, T., & Huang, Z. J., 2012, Dynamic monitoring of vegetation coverage in Three Gorges Reservoir area based on MODIS NDVI, Scientia Silvae Sinica, 48, 22– 28.

Yari, Y., Momtaz, H., Taheri, M., 2016, Spatial Distribution of Some Heavy Metals in Soils of Zanjan Industrial Zone, Water and Soil Science, 26(1), 223-236.