ارزیابی امنیت اکولوژیکی شهرستان نظرآباد براساس روند تغییرات کاربری اراضی با استفاده از سنجه‏ های سیمای سرزمین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری علوم و مهندسی محیط‌زیست، پژوهشکدة علوم محیطی، دانشگاه شهید بهشتی، تهران

2 استادیار پژوهشکدة علوم محیطی، دانشگاه شهید بهشتی، تهران

چکیده

توسعه با مفهوم عام آن، پیشرفت صنعتی، تکنولوژیکی و فضایی، به‌ویژه در کشورهای درحال‌توسعه، به تأثیرات نامطلوب در محیط‌زیست هم در مقیاس ناحیه‌ای و هم در سطوح گوناگون منطقه‎ای، ملی و گاه جهانی منجر شده و به همان میزان، امنیت اکولوژی مناطق را تحت تأثیر قرار داده است. طی دهه‌های اخیر، توجه بیشتری به امنیت زیست‌محیطی در جهان شده و روش‌های گوناگونی برای ارزیابی آن توسعه یافته است اما تا به امروز، بیشتر تحقیقات درمورد امنیت اکولوژیکی براساس مدل فشارـ وضعیت‌ـ پاسخ انجام شده است و کمتر مطالعاتی، برمبنای رویکرد مدل اکولوژی سیمای سرزمین، به این مقوله پرداخته‎اند. همچنین تحقیقات اندکی با تمرکز بر تغییرات پویای امنیت اکولوژیکی، به‌ویژه شبیه‌سازی و پیش‌بینی روند توسعة آیندة امنیت محیط‎زیست انجام شده است. هدف از این تحقیق پایش و پیش‌بینی وضعیت امنیت محیط‌زیست در دورة زمانی سال‌های 1991 تا 2035، با تلفیق الگوریتم ماشین‎بردار پشتیبانی، مدل اکولوژی سیمای سرزمین، مدل ترکیبی زنجیرة مارکوف و سلول‌های خودکار (CA-Markov) برای حوزة شهرستان نظرآباد از توابع استان البرز است. بدین‌منظور با طبقه‌بندی تصاویر ماهواره‎ای لندست در دو بازة زمانی پانزده‌ساله طی سال‌های 1991 تا 2021، روند تغییرات کاربری اراضی منطقه در پنج کلاس کاربری، اراضی ساخته‌شده، اراضی کشت‌شده، زمین‌های مرطوب، پوشش گیاهی و اراضی بایر بررسی شد و برای تهیة نقشه‌های کاربری سال 2035، از مدل CA-Markov استفاده شد. به‌منظور کمّی‌کردن ‎الگوهای ‎سیمای ‎سرزمین ‎در سطح کلاس، متریک‌های MPS، CA، NP، PLAND، AWMSI، PD و در سطح سیمای‎ سرزمین، متریک‎های LPI،CONTAG  و SHDI محاسبه شدند. پس از آن، شاخص امنیت اکولوژیک برای متریک‌های سیمای سرزمین منطقة مورد مطالعه، مدل‎سازی شد. نتایج حاکی از کاهش یکپارچگی و افزایش تعداد لکه‎ها در کلاس اراضی کشت‌شده و توسعه و گسترش اراضی انسان‌ساخت در این اراضی بود و از دیگرسو، شاهد بروز پدیدة یکپارچگی در اراضی بایر منطقه بودیم؛ ازاین‌رو امنیت اکولوژیکی منطقه در دورة مورد بررسی، متأثر از وقایع یادشده، طی سال‎های 1991 تا 2006 با شدت بیشتر و در سال‎های 2006 تا پیش‎بینی 2035، با شیب ملایم‏تری رو به کاهش ارزیابی شد. در پایان، رعایت بیش از پیش ملاحظات محیط‎زیستی و اصول حفاظت و حمایت در برنامه‎های توسعه‎ای منطقه پیشنهاد شد.
برای این منظور با استفاده از طبقه‌بندی تصاویر ماهواره ای لندست در دو بازه زمانی پانزده ساله بین سال‌های 1991 و 2006 و 2021، روند تغییرات کاربری اراضی منطقه مورد مطالعه در پنج کلاس کاربری؛ اراضی ساخته شده ، اراضی کشت شده ، زمین های مرطوب ، پوشش گیاهی و اراضی بایر مورد بررسی قرار گرفت و جهت کمی کردن الگوهای سیمای سرزمین در سطح کلاس متریک‌های MPS،CA،NP،PLAND،AWMSIT،PD و در سطح سیمای سرزمین متریک‌های LPI،CONTAG و SHDI محاسبه شدند. برای تهیه نقشه‌های کاربری سال 2035 از مدل CA-Markov استفاده گردید و سپس شاخص امنیت اکولوژیک برای متریک‌های سیمای سرزمین منطقه مورد مطالعه مدل سازی شد. نتایج حاکی از کاهش یکپارچگی و افزایش تعداد لکه ها در کلاس اراضی کشت شده و توسعه و گسترش اراضی انسان ساخت در این اراضی بوده و از طرف دیگر شاهد بروز پدیده یکپارچگی در اراضی بایر منطقه بوده ایم. از این رو امنیت اکولوژیکی منطقه، طی دوره مورد بررسی، متاثر از وقایع فوق، طی سال های 1991 تا 2006 با شدت بیشتر و در سال های 2006 تا پیش‎بینی 2035 با شیب ملایم تری رو به کاهش ارزیابی شد. از این رو رعایت بیش از پیش ملاحظات محیط زیستی و اصول حفاظت و حمایت در برنامه‎های توسعه ای منطقه، ضروری به نظر می‌رسد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Nazarabad County Ecological Security Based on the Trend of Land Use Changes Using Landscape Metrics

نویسندگان [English]

  • Monireh Amini 1
  • Romina Sayahnia 2
1 Ph.D. Student of Environmental Science and Engineering, Environmental Science Research Institute, Shahid Beheshti University
2 Assistant Prof., of Dep. of Environmental Planning and Design, Environmental Science Research Institute, Shahid Beheshti University
چکیده [English]

Development in its general sense, industrial, technological and spatial progress, especially in developing countries, has led to adverse effects on the environment not only on a regional scale but also at different regional, national and sometimes global levels which has similarly affected the ecological security of the regions. In recent decades, more attention has been paid to the issue of environmental safety in the world, and various methods have been developed to evaluate it, but to date, most research on ecological safety has been done based on the pressure- Status -response model and fewer studies have been conducted based on approach landscape ecology models have dealt with this category. There is also little research focusing on dynamic changes in ecological security, in particular simulating and predicting the future development of environmental security. The purpose of this study is to monitor and predict the environmental security situation in the period 1991 to 2035 by combining the support vector machine algorithm, landform ecology model, Markov chain combination model, and automated cells for the Nazarabad county area of ​​the functions Alborz province. For this purpose, using the classification of Landsat satellite images in two 15-year time periods from 1991 to 2021, the trend of land use changes in the region in five land use classes; Construction lands, cultivated lands, wetlands, vegetation and barren lands were studied and CA-Markov model was used to prepare land use maps for 2035. MPS, CA, NP, PLAND, AWMSI, and PD metrics were calculated to quantify the landscape appearance patterns at the class level and LPI, CONTAG, and SHDI metrics were calculated at the landscape level. Then, the ecological safety index was modeled for the landscape metrics of the study area. The results indicate a decrease in integration and an increase in the number of spots in the cultivated land class and the development and expansion of man-made lands in these lands. On the other hand, we have witnessed the phenomenon of integration in the barren lands of the region. Therefore, the ecological security of the region during the study period affected by the above events was evaluated more intensively during the years 1991 to 2006  and more gently in the years 2006 to the forecast of 2035. It was suggested that more attention be paid to environmental considerations and principles of protection in regional development programs.

For this purpose, using the Landsat satellite image classification in two fifteen-year periods between 1991, 2006, and 2021, the trend of land use change in the study area in five land use classes; Construction lands, cultivated lands, wetlands, vegetation cover, and bare lands were examined and to quantify the patterns of landscape appearance at the class level, MPS, CA, NP, PLAND, AWMSI, PD metrics and at the landscape level LPI, CONTAG and SHDI metrics were calculated. The CA-Markov chain model was used to prepare land use maps for 2035, and then the ecological security index was modeled for land use metrics in the study area. The results indicate a decrease in integration and an increase in the number of spots in the cultivated land class and the development and expansion of man-made lands in these lands. On the other hand, we have witnessed the phenomenon of integration in the barren lands of the region. Therefore, the ecological security of the region, during the period under review, affected by the above events, was assessed with more intensity during the years 1991 to 2006 and with a milder slope in the years 2006 to the forecast of 2035. Therefore, it seems necessary to pay more attention to environmental considerations and the principles of protection and protection in the development programs of the region.

کلیدواژه‌ها [English]

  • Ecological security
  • Landscape ecology
  • Remote sensing
  • Landscape metrics
Alborz Province Management and Planning Organization (2016). Alborz Province Spatial Planning Studies.
Argañaraz, J. P., & Entraigas, I. (2014). Scaling functions evaluation for estimation of landscape metrics at higher resolu-tions. Ecological informatics, 22, 1-12.
Bauni, V., Schivo, F., Capmourteres, V., & Homberg, M. (2015). Ecosystem loss assessment following hydroelectric dam flooding: The case of Yacyretá, Argentina. Remote Sensing Applications: Society and Environment, 1, 50-60.
Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote sensing of environment, 37(1), 35-46.
Fan, Ch., Myint,S., (2014). A comparison of spatial autocorrelation indices and landscape metrics in measuring urban landscape fragmentation, Landscape and Urban Planning 121 ,117-128.
Feng, Y., & Tong, X. (2017). Using exploratory regression to identify optimal driving factors for cellular automaton modeling of land use change. Environmental monitoring and assessment, 189(10), 1-17.
Hassanpour, P., Sayyahnia, R., Esmaeilzadeh, H. (2020). Ecological structure assessment of urban green space using the landscape approach (case study: Tehran’s 22nd district). Environmental Sciences, 18(1), 187-202. doi: 10.29252/envs.18.1.187
Inkoom, J. N., Frank, S., Greve, K., Walz, U., & Fürst, C. (2018). Suitability of different landscape metrics for the assessments of patchy landscapes in West Africa. Ecological Indicators, 85, 117-127.
Keshtkar, M., Sayahnia, R. (2021). Monitoring the Ecological Security of Esfahan with an Ecosystem Service Approach. Geography and Environmental Sustainability, 10(4), 91-107.
Kim, J., (2019). Subdivision design and landscape structure: Case study of The Woodlands, Texas, US, Urban Forestry & Urban Greening 38, 232-241.
Kupfer, J. A. (2012). Landscape ecology and biogeography: rethinking landscape metrics in a post-FRAGSTATS landscape. Progress in physical geography, 36(3), 400-420.
Liang, P., Liming, D., & Guijie, Y. (2010). Ecological security assessment of Beijing based on PSR model. Procedia Environ-mental Sciences, 2, 832-841.
Liang, X., Jin, X., Ren, J., Gu, Z., & Zhou, Y. (2020). A research framework of land use transition in Suzhou City coupled with land use structure and landscape multifunctionality. Science of the Total Environment, 737, 139932.
Liu, D., & Chang, Q. (2015). Ecological security research progress in China. Acta Ecologica Sinica, 35(5), 111-121.
Liu, P., Zhang, X., Ma, C., Zhang, H., Han, R., & Lu, X. (2021). Ecological Security Assessment Based on Remote Sensing and Landscape Ecology Model. Journal of Sensors, 2021.
Li, Z.T., Yuan, M. J, Hu, M.M., Wang, Y.F., Xia, B.Ch., (2019). Evaluation of ecological security and influencing factors analysis based on robustness analysis and the BP-DEMALTE model: A case study of the Pearl River Delta urban agglomeration, Ecological Indicators 101,595-602.
Liu, Y., Peng, J., & Wang, Y. (2018). Application of partial least squares regression in detecting the important landscape indicators determining urban land surface temperature variation. Landscape Ecology, 33(7), 1133-1145.
Liu, Y., Peng, J., Zhang, T., & Zhao, M. (2016). Assessing landscape eco-risk associated with hilly construction land exploitation in the southwest of China: Trade-off and adaptation. Ecological indicators, 62, 289-297.
Lu, J. (2015). Landscape ecology, urban morphology, and CBDs: an analysis of the Columbus, Ohio Metropolitan Area. Applied Geography, 60, 301-307.
Ma, L., Bo, J., Li, X., Fang, F., & Cheng, W. (2019). Identifying key landscape pattern indices influencing the ecological security of inland river basin: The middle and lower reaches of Shule River Basin as an example. Science of the Total Environment, 674, 424-438.
Membani. M., & Asgari, H. (2018). Monitoring assessment and prediction of spatial changes of Land Use/Cover using Markov Chain Model (Case study: Shushtar- Khuzestan), Sepehr Geographical Information Quarterly, 27 (105), 35-47. (In Farsi).
Miller, J.D., Brewer, T (2018). Refining flood estimation in urbanized catchments using landscape metrics, Landscape and Urban Planning175, 34-49.
Mõisja, K., Uuemaa., E., Oja, T (2016). Integrating small-scale landscape elements into land use/cover:The impact on landscape metrics’ values, Ecological Indicators 67, 714-722.
Moarrab, Y., Salehi, E., Amiri, M.J., and Hovidi, H. (2021). Ecological Security Analysis of Land Use Changes in Lavasanat Basin Using Landscape Metrics. Geography and Development, 19 (64), 77-114. (In Farsi).
Mohamed, A., & Worku, H. (2019). Quantification of the land use/land cover dynamics and the degree of urban growth goodness for sustainable urban land use planning in Addis Ababa and the surrounding Oromia special zone. Journal of Urban Management, 8(1), 145-158.
Morelli, F., Benedetti, Y., Šímová, P(2018). Landscape metrics as indicators of avian diversity and community measures, Ecological Indicators 90 (2018) 132-141.
Motlagh, Z. K., Lotfi, A., Pourmanafi, S., Ahmadizadeh, S., & Soffianian, A. (2020). Spatial modeling of land-use change in a rapidly urbanizing landscape in central Iran: Integration of remote sensing, CA-Markov, and landscape metrics. Environmental Monitoring and Assessment, 192(11), 1-19.
omidpour, M., Sayahnia, R., Rezaei, Y. (2020). The Impact of Urban Growth and Development Trend on Ecological Network Structure with Resilience and Landscape Approach (Case study of Hamedan). Iranian Journal of Remote Sensing & GIS, 12(2), 19-32.
Pan, Zh., Wang, G., Hu, Y., Cao, B (2019). Characterizing urban redevelopment process by quantifying thermal dynamic and landscape analysis, Habitat International 86, 61-70.
Parivar, P., Quanrud, D., Sotoudeh, A., & Abolhasani, M. (2021). Evaluation of urban ecological sustainability in arid lands (case study: Yazd-Iran). Environment, Development and Sustainability, 23(2), 2797-2826.
Peng, J., Zong, M., Hu, Y. N., Liu, Y., & Wu, J. (2015). Assessing landscape ecological risk in a mining city: a case study in Liaoyuan City, China. Sustainability, 7(7), 8312-8334.
Sajjadi Ghaemmaghami, S., Sayahnia, R., Mobarghei Dinan, N., Makhdoum Farkhondeh, M. (2021). Evaluating the implications of urban growth on carbon fixation ecosystem services (Case study: Karaj Subcatchments). Journal of RS and GIS for Natural Resources, 12(1), 20-37.
Sayahnia, R., Makhdoum, M., Faryadi, S. (2017). Ecological indices in evaluation of urban development capability (case study: Tehran metropolitan area(. Environmental Sciences, 15(1), 77-88.
Sayahnia, R., Sobhani, P., Mahmoudi, H., esmaeilzadeh, H. (2019). Estimation of the tourism carrying capacity in protect areas (Case study: Alvand No-Hunting Area). Journal of Tourism Planning and Development, 8(30), 51-64. doi: 10.22080/jtpd.2019.16240.3037
Schwoertzig, E., Poulin, N., Hardion, L., & Trémolières, M. (2016). Plant ecological traits highlight the effects of landscape on riparian plant communities along an urban–rural gradient. Ecological indicators, 61, 568-576.
Shafiee Sabet. N,  Shakiba, A.,  Mohammadi, A. (2019). Detection and prediction of land use changes using CA-Markov model Case study: Tehran - Damavand, Sepehr Geographical Information Quarterly, 28 (111), . 175-190, (In Farsi).
Sheikh Goodarzi. M.,  Alizadeh Shabani, A.,  Salman Mahini, A., Feghhi, J. (2011). Landscape Ecological Metrics-based Investigation of Land Cover/Use Changes in Korganrud Watershed, Journal of Resources Natural Iran, 64 (4), . 431 - 441, (In Farsi).
Shi, Y., Qi, Z., Liu, X., Niu, N., & Zhang, H. (2019). Urban land use and land cover classification using multisource remote sensing images and social media data. Remote Sensing, 11(22), 2719.
 Su, W., Gu, C., Yang, G., Chen, S., & Zhen, F. (2010). Measuring the impact of urban sprawl on natural landscape pattern of the Western Taihu Lake watershed, China. Landscape and Urban Planning, 95(1-2), 61-67.
Su, Y., Chen, X., Liao, J., Zhang, H., Wang, C., Ye, Y., & Wang, Y. (2016). Modeling the optimal ecological security pattern for guiding the urban constructed land expansions. Urban Forestry & Urban Greening, 19, 35-46.
Sun, J., Li, Y. P., Gao, P. P., & Xia, B. C. (2018). A Mamdani fuzzy inference approach for assessing ecological security in the Pearl River Delta urban agglomeration, China. Ecological Indicators, 94, 386-396.
Vanderhaegen,S.,Canters,Frank., (2017). Mapping urban form and function at city block level using spatial metrics, Landscape and Urban Planning 167, 399-409.
Valeria, B., Facundo, S., Virginia, C., Marina, H., (2015). Ecosystem loss assessment following hydroelectric dam flooding: The case of Yacyretá, Argentina, Remote Sensing Applications: Society and Environment, 1, 50-60.
Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., & Strano, M. S (2012). Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology, 7(11), 699-712.
Weber, T. (2004). Landscape ecological assessment of the Chesapeake Bay watershed. Environmental Monitoring and Assessment, 94(1), 39-53.
Wei, S., Pan, J., & Liu, X. (2020). Landscape ecological safety assessment and landscape pattern optimization in arid inland river basin: Take Ganzhou District as an example. Human and Ecological Risk Assessment: An International Journal, 26(3), 782-806.
Wu, X., Liu, S., Sun, Y., An, Y., Dong, Sh., Liu., G., (2019). Ecological security evaluation based on entropy matter-element model: A case study of Kunming city, southwest China, Ecological Indicators 102, 469-478.
Yu, Y., Yu, M., Lin, L., Chen, J., Li, D., Zhang, W., & Cao, K. (2019). National green GDP assessment and prediction for China based on a CA-Markov land use simulation model. Sustainability, 11(3), 576.
Yu, M., Huang, Y., Cheng, X., Tian, J., (2019) . An ArcMap plug-in for calculating landscape metrics of vector data, Ecological Informatics, 50, 207-219.
Yuantao, X., Qingwen, M., Zheng, Y., Yanying, B., Yehong, S., Jing, L., & Zhi, C. (2013). Identifying landscape pattern metrics for the Hani Terrace in Yunnan, China. Journal of Resources and Ecology, 4(3), 212-219.
Zheng, Zh., Du, Sh.,Wang, Y.Ch.,Wang,Q (2018). Mining the regularity of landscape-structure heterogeneity to improve urban land-cover mapping, Remote Sensing of Environment, 214, 14-32.
Zhou, K., Liu, Y., Tan, R., Song, Y., (2014). Urban dynamics, landscape ecological security, and policy implications: A Case study from the Wuhan area of central China, Cities 41 141-153.
Zhu, C., Zhang, X., Zhou, M., He, S., Gan, M., Yang, L., & Wang, K. (2020). Impacts of urbanization and landscape pattern on habitat quality using OLS and GWR models in Hangzhou, China. Ecological Indicators, 117, 106654.