Agrawal, M. & Nagwanshi, K., 2016, High Resolution Image Classification with Edge Detection Based Segmentation and AdaBoost, International Research Journal of Engineering and Technology (IRJET), 3(5), PP. 1844- 1847.
Baatz, M., 2000, Multi Resolution Segmentation: An Optimum Approach for High Quality Multi Scale Image Segmentation, In: Beutrage Zum AGIT-Symposium, Salzburg, Heidelberg, 2000 (PP. 12-23).
Baatz, M., Benz, U., Dehghani, S., Heynen, M., Höltje, A., Hofmann, P., Lingenfelder, I., Mimler, M., Sohlbach, M. & Weber, M., 2004, eCognition Professional User Guide version 4.0. München: Definiens Imaging GmbH.
Bui, Q.-T., Pham Van, M., Hang, N.T.T., Nguyen, Q.-H., Linh, N.X., Hai, P.M., Tuan, T.A. & Van Cu, P. 2019, Hybrid Model to Optimize Object-Based Land Cover Classification by Meta-Heuristic Algorithm: An Example for Supporting Urban Management in Ha Noi, Viet Nam, International Journal of Digital Earth, 12, PP. 1118-1132.
Chen, Y., Dou, P. & Yang, X., 2017, Improving Land Use/Cover Classification with a Multiple Classifier System Using AdaBoost Integration Technique, Remote Sensing, 9, P. 1055.
Cormen, T.H., Leiserson, C.E., Rivest, R.L. & Stein, C., 2009, Introduction to Algorithms, MIT Press.
Definiens, A., 2007, Definiens Developer 7 Reference Book, Definiens AG, München, PP. 21-24.
Dou, P., Chen, Y. & Yue, H., 2018, Remote-Sensing Imagery Classification Using Multiple Classification Algorithm-Based AdaBoost, International Journal of Remote Sensing, 39, PP. 619-639.
Dronova, I., Gong, P. & Wang, L., 2011, Object-Based Analysis and Change Detection of Major Wetland Cover Types and Their Classification Uncertainty during the Low Water Period at Poyang Lake, China, Remote Sensing of Environment, 115, PP. 3220-3236.
Duffy, N. & Helmbold, D.P., 2000, Potential Boosters?, In: Advances in Neural Informa-tion Processing Systems (PP. 258-264).
Fan, J., Zeng, G., Body, M. & Hacid, M.-S., 2005, Seeded Region Growing: An Extensive and Comparative Study, Pattern Recognition Letters, 26, PP. 1139-1156.
Foody, G.M., 2004, Thematic Map Comparison, Photogrammetric Engineering & Remote Sensing, 70, PP. 627-633.
Freund, Y. & Schapire, R.E., 1997, A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting, Journal of Computer and System Sciences, 55, PP. 119-139.
Georganos, S., Grippa, T., Vanhuysse, S., Lennert, M., Shimoni, M., Kalogirou, S. & Wolff, E., 2018, Less Is More: Optimizing Classification Performance through Feature Selection in a Very-High-Resolution Remote Sensing Object-Based Urban Application, GIScience & Remote Sensing, 55, PP. 221-242.
Hamidi, M., Ebadi, H. & Kiani, A., 2018, Building Detection in Urban Areas from High-Resolution Remote Sensing Images Using the Developed AdaBoost Method and High-Level (Quasi-Deep) Features, JGST., 8(2), PP. 35-52.
Haralick, R.M., Shanmugam, K. & Dinstein, I., 1973, Textural Features for Image Classification, IEEE Transactions on Systems, Man, and Cybernetics, SMC-3, PP. 610-621.
Heo, J. & Yang, J.Y., 2014, AdaBoost Based Bankruptcy Forecasting of Korean Construction Companies, Applied Soft Computing, 24, PP. 494-499.
Huang, X. & Zhang, L., 2012, An SVM Ensemble Approach Combining Spectral, Structural, and Semantic Features for the Classification of High-Resolution Remotely Sensed Imagery, IEEE Transactions on Geoscience and Remote Sensing, 51, PP. 257-272.
Jia, Y., 2015, Object-Based Land Cover Classification with Orthophoto and Lidar Data, In: Environmental Science, Mathematics.
Kégl, B., 2013, The Return of AdaBoost. MH: Multi-Class Hamming Trees, LAL/LRI, University of Paris-Sud, CNRS, 91898 Orsay, France.
Kiani, A., Ahmadi, F.F. & Ebadi, H., 2019, Developing an Interpretation System for High-Resolution Remotely Sensed Images Based on Hybrid Decision-Making Process in a Multi-scale Manner, Journal of the Indian Society of Remote Sensing, PP. 1-18.
Kiani, A., Farnood Ahmadi, F. & Ebadi, H., 2021, Correction of Training Process in Object-Based Image Interpretation via Knowledge Based System Capabilities, Multimedia Tools and Applications, 80, PP. 24901-24924.
Laliberte, A.S., Browning, D. & Rango, A., 2012, A Comparison of Three Feature Selection Methods for Object-Based Classification of Sub-Decimeter Resolution UltraCam-L Imagery, International Journal of Applied Earth Observation and Geoinformation, 15, PP. 70-78.
Li, X., Wang, L. & Sung, E., 2004, Improving Adaboost for Classification on Small Training Sample Sets with Active Learning, Korea, Available:
https://www.researchgate.net/publication/228849380_Improving_adaboost_for_classification_on_small_training_sample_sets_with_active_learning.
Ma, L., Li, M., Ma, X., Cheng, L., Du, P. & Liu, Y., 2017, A Review of Supervised Object-Based Land-Cover Image Classification, ISPRS Journal of Photogrammetry and Remote Sensing, 130, PP. 277-293.
Mason, L., Baxter, J., Bartlett, P.L. & Frean, M.R., 2000, Boosting Algorithms as Gradient Descent, In: Advances in Neural Information Processing Systems (PP. 512-518).
Maxwell, A.E., Warner, T.A. & Fang, F., 2018, Implementation of Machine-Learning Classification in Remote Sensing: An Applied Review, International Journal of Remote Sensing, 39, PP. 2784-2817.
Momeni, R., Aplin, P. & Boyd, D.S., 2016, Mapping Complex Urban Land Cover from Spaceborne Imagery: The Influence of Spatial Resolution, Spectral Band Set and Classification Approach, Remote Sensing, 8, P. 88.
Pérez-Ortiz, M., Peña, J.M., Gutiérrez, P.A., Torres-Sánchez, J., Hervás-Martínez, C. & López-Granados, F., 2016, Selecting Patterns and Features for between-and within-Crop-Row Weed Mapping Using UAV-Imagery, Expert Systems with Applications, 47, PP. 85-94.
Prasvita, D.S. & Arymurthy, A.M., 2017, Classification of LiDAR Images Fused with Aerial Optical Images Using Ensemble Classifier AdaBoost. MH and Post-processing BFS, International Journal of Technology And Business, 1, PP. 10-16.
Schapire, R.E. & Singer, Y., 1999, Improved Boosting Algorithms Using Confidence-Rated Predictions, Machine Learning, 37, PP. 297-336.
Tamimi, E., Ebadi, H. & Kiani, A., 2017, Evaluation of Different Metaheuristic Optimization Algorithms in Feature Selection and Parameter Determination in SVM Classification, Arabian Journal of Geosciences, 10, P. 478.
Tokarczyk, P., Wegner, J.D., Walk, S. & Schindler, K., 2015, Features, Color Spaces, and Boosting: New Insights on Semantic Classification of Remote Sensing Images, IEEE Transactions on Geoscience and Remote Sensing, 53, PP. 280-295.
Viola, P. & Jones, M.J., 2004, Robust Real-Time Face Detection, International Journal of Computer Vision, 57, PP. 137-154.