تعیین مناسب‌ترین طیف الکترومغناطیس برای پیش‌بینی عناصر غذایی در برخی گونه‌های مرتعی، با استفاده از طیف‌سنجی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار بخش مهندسی طبیعت، دانشکدة کشاورزی و منابع طبیعی داراب، دانشگاه شیراز

2 دانشیار بخش جغرافیا، دانشکدة اقتصاد، مدیریت و علوم اجتماعی، دانشگاه شیراز

چکیده

امروزه از علم سنجش از دور برای مطالعات گیاهی ازجمله تعیین مواد مغذی، بیماری‌های گیاهی، کمبود آب یا مازاد آن، شناسایی علف‌های هرز استفاده می‌شود. گیاه، براساس ویژگی‌هایی که دارد، با برخورد امواج الکترومغناطیس به آن واکنش‌های متفاوتی در مقابل امواج (میزان جذب، انعکاس یا عبور) از خود نشان می‌دهد. ازجمله اطلاعاتی که علم سنجش در این زمینه می‌تواند به‌دست آورد میزان مواد مغذی موجود در گیاه است. با تعیین میزان مواد مغذی موجود در گیاه، می‌توان از مقدار کود مورد نیاز گیاه آگاهی یافت و از سویی، این مواد مغذی، به‌ویژه گیاهان مرتعی را شناسایی کرد. هدف از این مطالعه تعیین مواد مغذی موجود در گیاهان مرتعی مریم‌نخودی دارابی، اسفند، پنج‌انگشت، اسفند رومی، کُنار، شکر شفا با به‌کارگیری دانش سنجش از دور است. برای رسیدن به این هدف، با استفاده از طیف‌سنج در بازة طیفی ۳/۰ تا ۱/۱ میکرومتر، واکنش گیاه به امواج الکترومغناطیس مشخص شد. سپس با تعیین مواد غذایی موجود در این گیاهان، رابطة بین میزان انعکاس‌های امواج الکترومغناطیس با مقدار مواد مغذی در این گیاهان تعیین شد. نتایج نشان داد که در گیاه اسفند رومی باند ۱۰۲۶ نانومتر، در گیاه اسفند باند ۱۰۴۰ نانومتر، در گیاه کُنار باند ۱۰۴۶ نانومتر، در گیاه مریم‌نخودی باند ۱۰۳۰، در گیاه پنج‌انگشت باند ۴۰۰ و ۱۰۳۸ و در شکر شفا باند ۱۰۳۸ مؤثرترین باندها در پیش‌بینی مقدار P مؤثرند. از دیگرسو، به‌منظور پیش‌بینی Zn در گیاه اسفند رومی باند ۱۰۲۶ نانومتر، در گیاه اسفند باند ۱۰۴۰، در گیاه کُنار باند ۱۰۴۵، در گیاه مریم‌نخودی باند ۱۰۳۰، در گیاه پنج‌انگشت باند ۱۰۱۰ و در شکر شفا باند ۱۰۲۸ مؤثرترین باندها به‌شمار می‌روند. به‌منظور پیش‌بینی Cu با استفاده از مقادیر باندهای طیفی، مشخص می‌شود در گیاه اسفند رومی باند ۴۰۲ نانومتر، در گیاه اسفند باند ۴۱۰، در گیاه کُنار باند ۱۰۴۶، در مریم‌نخودی باند ۱۰۳۰، در پنج‌انگشت و در شکر شفا باند ۱۰۳۸ مؤثرترین باندها محسوب می‌شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Determining the Most Appropriate Electromagnetic Spectrum for Predicting Nutrients in a Number of Rangeland Species Using Remote Sensing

نویسندگان [English]

  • alireza mahmoodi 1
  • Marzieh Mokarramb 2
1 Assistant Prof., Dep. of Nature Engineering, Collage of Agriculture and Natural Resources of Darab, Shiraz University
2 Associate Prof., Dep. of Geography, Faculty of Economics, Management and Social Sciences, Shiraz University
چکیده [English]

Today, remote sensing is used for plant studies, such as determining nutrient levels, plant diseases, water deficiency or excess, weed identification, and so on. As electromagnetic waves strike the plants, they react in different ways (absorption, reflection or passage) based on the characteristics of the plants. The quantity of nutrients in a plant can be determined through measurement science in plant studies. Since the amount of nutrients in the plant can be determined, it is possible to know how much fertilizer the plant needs. On the other hand, identified the nutrients in the plant, especially rangeland plants. A spectrometer was used to measure the plant's response to electromagnetic waves in the range of 0.3 to 1.1 m. Following that, the relationship between the amount of electromagnetic waves and the amount of nutrients in these plants was determined. The results showed that in Fagonia bruguieri b1026 nm, in Peganum harmala b1040 nm, in Ziziphus spina-christi b1046 nm, in Tecurium persicum band 1030 nm, in Vitex pesedo-negundo b400 and b1038 and in Otostegia persica band They are effective in predicting the value of P. For the prediction of Zn in F. bruguieri b1026 nm band, in P.harmala b1040 nm band, in Z. spina-christi ba1045 nm band, in T. persicum pea b1030 nm band, in V. pesedo-negundo plant b1010 nm and in O. persica band They are the most effective bands. To predict Cu, it is determined using spectral band values ​​that in F.bruguieri band is b402 nm, in P. harmala band is b410 nm, in Z. spina-christi band is b1046 nm, in T. persicum band is b1030 nm, in V.pesedo and O. persica b1038 are the most effective bands.

کلیدواژه‌ها [English]

  • Rangeland plants
  • Remote sensing
  • Electromagnetic waves
  • Linear regression method
  1. Arzani, H., Kabuli, S.H., Nikkhah, A. & Jalili, A., 2004, Introduction of the Most Important Indicators for Determining the Nutritional Value of Pasture Plants, Journal of Natural Resources of Iran, 57(4), PP. 777-791.

    Balogun, A.L., Yekeen, S.T., Pradhan, B. & Althuwaynee, O.F., 2020, Spatio-Temporal Analysis of Oil Spill Impact and Recovery Pattern of Coastal Vegetation and Wetland Using Multispectral Satellite Landsat 8-OLI Imagery and Machine Learning Models, Remote Sensing, 12(7), P. 1225.

    Calera, A., Martínez, C. & Melia, J., 2001, A Procedure for Obtaining Green Plant Cover: Relation to NDVI in a Case Study for Barley, International Journal of Remote Sensing, 22(17), PP. 3357-3362.

    Carreño-Conde, F., Sipols, AE., deBlas, CS. & Mostaza-Colado, D.A., 2021, Forecast Model Applied to Monitor Crops Dynamics Using Vegetation Indices (Ndvi), Applied Sciences, 11(4), PP. 1859300-307.

    Cho, M.A., Skidmore, A., Corsi, F., Wieren, S.E.V. & Sobhan, I., 2007, Estimation of Green Grass/Herb Biomass from Airborne Hyperspectral Imagery Using Spectral Indices and Partial Least Squares Regression, International Journal of Applied Earth Observation and Geoinformation, 9, PP. 414-424.

    Cohen, W.B., Maiersperger, T.K., Gower, S.T. & Turner, D.P., 2003, An Improved Strategy for Regression of Biophysical Variables and Landsat ETM+ Data, Remote Sensing of Environment, 84, PP. 561-571.

    Daghestani, M., 2018, Application of Remote Sensing in Forest Management, First Regional Geomatic Conference, Islamshahr.

    Ding, Z., Hu, X., Wan, Y., Wang, S. & Gao, B., 2016, Removal of Lead, Copper, Cadmium, Zinc, and Nickel from Aqueous Solutions by Alkali-Modified Biochar: Batch and Column Tests, Journal of Industrial and Engineering Chemistry, 33, PP. 239-245.

    Eidvidge, C.D., 2007, Visible and Near Infrared Reflectance Charactristics of Dry Plant Materials, International Journal of Remote Sensing, 11(10), PP. 1775-1795.

    Eitel, J.U.H., Gessler, P.E., Smith, A.M.S. & Robberecht, R., 2006, Suitability of Existing and Novel Spectral Indices to Remotely Detect Water Stress in Populus spp, Forest Ecology and Management, 229, PP. 170-182.

    Fensholt, R. & Sandholt, I., 2003, Derivation of a Shortwave Infrared Water Stress Index from MODIS Near-and Shortwave Infrared Data in a Semiarid Environment, Remote Sensing of Environment, 87(1), PP. 111-121.

     

    ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ

    1. Cohen
    2. 2. Food and Agriculture Organization
    3. 3. World Health Organization

    Ferwerda, J.G., Skidmore, A.K. & Mutanga, O., 2005, Nitrogen Detection with Hyper-spectral Normalized Ratio Indices across Multiple Plant Species, International Journal of Remote Sensing, 26, PP. 4083-4095.

    Gholizadeh, A. & Kopačková, V., 2019, Detecting Vegetation Stress as a Soil Contamination Proxy: A Review of Optical Proximal and Remote Sensing Techniques, International Journal of Environmental Science and Technology, 16(5), PP. 2511-2524.

    Gitelson, A.A., Kaufman, Y.J., Stark, R. & Rundquist, D., 2002, Novel Algorithms for Remote Estimation of Vegetation Fraction, Remote Sensing of Environment, 80(1), PP. 76-87.

    Goldsmith, F.B., 1991, Monitoring for Conservation and Ecology, Chapman & Hall, 275P.

    Hansen, P.M. & Schjoerring, J.K., 2003, Reflectance Measurement of Canopy Biomass and Nitrogen Status in Wheat Crops Using Normalized Difference Vegetation Indices and Partial Least Squares Regression, Remote Sensing Environ, 86, PP. 542-553.

    Horler, D.N.H., Dockray, M. & Barber, J., 1983, The Red Edge of Plant Leaf Reflectance, International Journal of Remote Sensing, 4, PP. 273-288.

    Hubbard, S.S., Schmutz, M., Balde, A., Falco, N., Peruzzo, L., Dafflon, B., Léger, E. & Wu, Y., 2021, Estimation of Soil Classes and their Relationship to Grapevine Vigor in a Bordeaux Vineyard: Advancing the Practical Joint Use of Electromagnetic Induction (EMI) and NDVI Datasets for Precision Viticulture,  Precision Agriculture, PP. 1-24.

    Huete, A.R., 1988, A Soil-Adjusted Vegetation Index (SAVI), Remote Sensing of Environment, 25(3), PP. 295-309.

    Jimoh, W.L.O. & Mohammed, M.I., 2012, Assessment of Cadmium and Lead in Soil and Tomatoes Grown in Irrigated Farmland of the Kaduna Metropolis Nigeria, Research Journal of Environmental and Earth Sciences, 4(1), PP. 55-59.

    Kerle, N., Janssen, L.L. & Huurneman, G.C., 2004, Principles of Remote Sensing, ITC, Educational Textbook Series, 2, P. 250.

    Lu, R.K., 1999, Analytical Methods for Soil Agrochemistry, Chinese Agricultural Science and Technology Publishing, House, Beijing.

    Milton, N.M., Ager, C.M., Eiswerth, B.A. & Power, M.S., 1990, Arsenic- and Selenium-Induced Changes in Spectral Reflectance and Morphology of Soybean Plants, Remote Sensing of Environment, 30, PP. 263-269.

    Muchuweti, M., Birkett, J.W., Chinyanga, E., Zvauya , R., Scrimshaw, M.D. & Lester, J.N., 2006, Heavy Metal Content of Vegetables Irrigated with Mixtures of Wastewater and Sewage Sludge in Zimbabwe: Implications for Human Health, Agriculture, Ecosystems and Environment, 112, PP. 41-48.

    Mobarki, Hoda & Ataian, taktom., 2015, The use of remote sensing data in advance knowledge of the integrated management of pests and diseases, The first research congress on the application of modern sciences in geographical studies of Iran, https://civilica.com/doc/451450.

    Næsset, E., Bollandsås, O.M. & Gobakken, T., 2005, Comparing Regression Methods in Estimation of Biophysical Properties of Forest Stands from Two Different Inventories Using Laser Scanner Data, Remote Sens. Environ, 94, PP. 541-553.

    O'neill, P.E., Chauhan, N.S. & Jackson, T.J., 1996, Use of Active and Passive Microwave Remote Sensing for Soil Moisture Estimation through Corn, International Journal of Remote Sensing, 17(10), PP. 1851-1865.

    Rouse, J.W., Haas, R.H., Schell, J.A. & Deering, D.W., 1974, Monitoring Vegetation Systems in the Great Plains with ERTS, NASA Special Publication, 351(1974), P. 309.

    Seelig, H.D., Hoehn, A., Stodieck, L.S., Klaus, D.M., Adams Iii, W.W. & Emery, W.J., 2008, Relations of Remote Sensing Leaf Water Indices to Leaf Water Thickness in Cowpea, Bean, and Sugarbeet Plants, Remote Sensing of Environment, 112, PP. 445-455.

    Tavakli, M., Safaian, N. & Shukri, M., 2014, Investigating the Importance and Role of Classification of Plants in the Assessment of Pasture Capacity, the third national conference on pasture and pasture management of Iran, Karaj.

    Wójtowicz, M., Wójtowicz, A. & Piekarczyk, J., 2016, Application of Remote Sensing Methods in Agriculture, Communications in Biometry and Crop Science, 11, PP. 31-50.

    Wylie, B.K., Meyer, D.J., Tieszen, L.L. & Mannel, S., 2002, Satellite Mapping of Surface Biophysical Parameters at the Biome Scale over the North American Grasslands: A Case Study, Remote Sensing of Environment, 79(2-3), PP. 266-278.

    Yavari, S.M. & Qaderi, F., 2020, Determination of Thermal Pollution of Water Resources Caused by Neka Power Plant through Processing Satellite Imagery, Environment, Development and Sustainability, 22(3), PP. 1953-1975.