بهبود تخمین پارامتر LAI با استفاده از توابع هزینة جایگزین و راهکارهای چندجوابه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشکدة علوم انسانی، دانشگاه تربیت مدرس

2 کارشناس ارشد سنجش از دور و GIS، دانشگاه تربیت مدرس

3 دانشیار دانشکده علوم انسانی، دانشگاه تربیت مدرس

چکیده

پوشش گیاهی موتور محرک کرة زمین است؛ تبادلات انرژی و آب بین اتمسفر و زمین را کنترل می‌کند و در چرخه‏های جهانی انرژی، اکسیژن، دی‏اکسیدکربن و آب نقش مهمی دارد. پایش و مدیریت پوشش‌های گیاهی با استفاده از پارامتر‌های بیوفیزیکی و بیوشیمیایی آن، مانند LAI، انجام می‌پذیرد. شاخص سطح برگ (LAI) از مهم‌ترین پارامترهای پوشش گیاهی است که در اغلب مدل‌سازی‌ها مانند مدل‌سازی چرخه‌های آب، انرژی و کربن استفاده می‌شود. رویکردهای بازیابی متفاوتی، به‌منظور استخراج اطلاعات پارامترهای بیوفیزیکی از داده‌های سنجش از دوری، توسعه یافته است. در تحقیق حاضر، از روش فیزیکی معکوس مدل انتقال تابش PROSAIL، مبتنی‌بر جدول LUT، با هدف بازیابی متغیر LAI استفاده شده است. همچنین داده‌های زمینی برداشت‌شده طی کمپین SPARC 2003 برای ارزیابی صحت متغیر بازیابی‌شده به‌کار رفت. برای رفع مشکل ill-posed، چهار دسته از معیارهای هزینه با عنوان اندازه‌گیر اطلاعات (IM)، حداقل اختلاف (MC)، اندازه‌گیر زاویه (SAM) و خطای حداقل مربعات (LSE) به‌همراه نرمال‌سازی و میانگین بهترین جواب‌ها استفاده شد. نتایج بهبود تخمین متغیر LAI را با استفاده از معیار اندازه‌گیر اطلاعات (Kulbak-liebler)، به‌میزان 12% و با استفاده از 11% میانگین بهترین جواب‌ها نشان دادند. تابع هزینة LSE نیز در قیاس با حالت نرمال‌نشده، 7% بهبود یافت.

کلیدواژه‌ها


عنوان مقاله [English]

Combining Multiple Solution and Cost Function for Better LAI Estimation

نویسندگان [English]

  • alijafar mousivand 1
  • meysam shir mohammad pour 2
  • ali shamsoddini 3
1 Assistant Prof., Faculty of Humanities, Dep. of Remote Sensing (GIS), Tarbiat Modarres University
2 Master Student of Remote Sensing and GIS, Tarbiat Modarres University
3 Associate Prof., Faculty of Humanities, Dep. of Remote Sensing (GIS), Tarbiat Modarres University
چکیده [English]

Vegetation is a key component of the earth planet, which controls the energy and water exchanges between atmosphere and the Earth surface and plays an important role in the global energy cycles, such as oxygen, carbon dioxide, and water. Monitoring and management of vegetation are done using its biophysical and biochemical parameters such as LAI. Leaf area index (LAI) is one of the most important vegetation parameters that used in most of the applications such as water and carbon cycles modeling.
Remote sensing in terms of their continuous and extensive cover is a unique tool for generating vegetation variables. Different retrieval approaches have been developed to extract biophysical parameters information from remote sensing data, which is divided into two broad classes, the statistical/experimental approaches and the physical approach. In the present study, the PROSAIL RT model (Radiation Transfer Model) based on the LUT table have been used to retrieve the LAI variable. Ground reference data collected during the SPARC 2003 campaign were also used to evaluate the accuracy of the retrieved variable. To drawback, the ill-posed problem, four categories of cost functions have been used: Information Measurement (IM), Minimum contrast (MC), Angle Measurement (SAM) and Least Square Error (LSE) and used the multiple Best solution instead of Single best solution. The results showed improvement in the LAI estimation of up to 12% for the multi-species canopy.
 

کلیدواژه‌ها [English]

  • Leaf area index
  • Radiative transfer model
  • Cost function
  • Look up table
cour, C., Jacquemoud, S., Tourbier, Y., Dechambrec, M. &  Frangi,  J.-P., 2002, Design and Analysis of Numerical Experiments to Compare Four Canopy Reflectance Models, Remote Sensing of Environment, 79(1), PP. 72-83.
Baret, F., 2010, Biophysical Vegetation Variables Retrieval from Remote Sensing Observations, Proceedings of Remote Sensing for Agriculture, Ecosystems, and Hydrology XII, 7824, PP. 17-19.
Baret, F. & Buis, S., 2008, Estimating Canopy Characteristics from Remote Sensing Observations: Review of Methods and Associated Problems, In Advances in land Remote Sensing, Springer; PP. 173-201.
Chen, J.M. & Black, T.A., 1992, Defining Leaf Area Index for Non-Flat Leaves, Plant, Cell & Environment, 15(4), PP. 421-29.
Combal, B., Baret, F., Weiss, M., Trubuil, A., Macé, D., Pragnère, A., Myneni, R.B., Knyazikhin, Y. & Wang, L.B., 2003, Retrieval of Canopy Biophysical Variables from Bidirectional Reflectance Using Prior Information to Solve the Ill-Posed Inverse Problem, Remote Sensing of Environment, 84(1), PP. 1-15.
D’Urso, G., Dini, L., Vuolo, F., Alonso, L. & Guanter L., 2004, Retrieval of Leaf Area Index by Inverting Hyper-Spectral, Multi-Angular CHRIS/Proba Data from Sparc 2003, European Space Agency, (Special Publication) ESA SP, (578), PP. 58-63.
Darvishzadeh, R., Skidmore, A., Schlerf, M. & Atzberger, C., 2008, Inversion of a Radiative Transfer Model for Estimating Vegetation LAI and Chlorophyll in a Heterogeneous Grassland, Remote Sensing of Environment, 112(5), PP. 2592-2604.
Dashti Ahangar A.H., Darvishzadeh R., Matkan A.A., Hajeb M. Inversion of a Radiative Transfer Model for Estimation of Rice Canopy Chlorophyll Content and ALOS Imagery, Iranian Journal of Remote Sensing   & GIS, Vol.3, No.2, Summer 2011.  
Gitelson, A.A., Viña, A., Ciganda, V., Rundquist, D.C. & Arkebauer, T.J., 2005, Remote Estimation of Canopy Chlorophyll Content in Crops, Geophysical Research Letters, 32(8), PP. 1-4.
Hadi, H., 2015, Multivariate Statistical Analysis for Estimating Grassland Leaf Area Index and Chlorophyll Content Using Hyperspectral Data, PhD Dissertation, (June).
Jacquemoud, S. & Baret, F., 1990, PROSPECT: A Model of Leaf Optical Properties Spectra, Remote Sensing of Environment, 34(2), PP. 75-91.
Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P.J., Asner, G.P., François, C. & Ustin, S.L., 2009, PROSPECT + SAIL Models: A Review of Use for Vegetation Characterization, Remote Sensing of Environment, 113(SUPPL. 1).
 
Leonenko, G., Los, S.O. & North, P.R.J., 2013a., Retrieval of Leaf Area Index from MODIS Surface Reflectance by Model Inversion Using Different Minimization Criteria, Remote Sensing of Environment, 139, PP. 257-70. http://dx.doi.org/10.1016/j.rse.2013.07.012.
———, 2013b, Statistical Distances and Their Applications to Biophysical Parameter Estimation: Information Measures, m-Estimates, and Minimum Contrast Methods, Remote Sensing, 5(3), PP. 1355-88.
Meroni, M., Colombo, R. & Panigada, C., 2004, Inversion of a Radiative Transfer Model with Hyperspectral Observations for LAI Mapping in Poplar Plantations, Remote Sensing of Environment, 92(2), PP. 195-206.
Mousivand, A.J., 2015a. Retrieval of Vegetation Properties Using Top of Atmosphere Radiometric Data: A Multi-Sensor Approach, http://repository.tudelft.nl/view/ir/uuid:8c367e85-91e4-4377-8e39-65c8c36605ac/.
Mousivand, A.J., Menenti, M., Gorte, B. & Verhoef, W., 2015, Multi-Temporal, Multi-Sensor Retrieval of Terrestrial Vegetation Properties from Spectral-Directional Radiometric Data, Remote Sensing of Environment, 158, PP. 311-30.
Richter, K., Atzberger, C., Vuolo, F., Weihs, P. & D’Urso, G., 2009, Experimental Assessment of the Sentinel-2 Band Setting for RTM-Based LAI Retrieval of Sugar Beet and Maize, Canadian Journal of Remote Sensing, 35(3), PP. 230-47.
Richter, K., Atzberger, C., Vuolo, F. & D’Urso, G., 2011, Evaluation of Sentinel-2 Spectral Sampling for Radiative Transfer Model Based LAI Estimation of Wheat, Sugar Beet, and Maize, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(2), PP. 458-64.
Rivera, J.P., Verrelst, J., Leonenko, G. & Moreno, J., 2013, Multiple Cost Functions and Regularization Options for Improved