Bai, J.J., Yu, Y. & Di, L., 2017, Comparison between Tvdi and Cwsi for Drought Monitoring in the Guanzhong Plain, China, Journal Of Integrative Agriculture, 16(2), PP. 389-397. Https://Doi.Org/ 10.1016/S2095-3119(15)61302-8.
Bhandari, A.K., Kumar, A. & Singh, G.K., 2012, Feature Extraction Using Normalized Difference Vegetation Index (Ndvi): A Case Study of Jabalpur City, Procedia Technology, 6, PP. 612-621. Https://Doi.Org/ 10.1016/J.Protcy.2012.10.074
Eliasson, J., 2014, The Rising Pressure of Global Water Shortages, Nature 2014 517:7532, 517(7532), PP. 6-6. Https://Doi.Org/10.1038/517006a.
Fallahati, A., Soleimani, H., Alimohammadi, M., Dehghanifard, E., Askari, M., Eslami, F. & Karami, L., 2020, Impacts of Drought Phenomenon on the Chemical Quality of Groundwater Resources in the Central Part of Iran—Application of Gis Technique, Environmental Monitoring And Assessment, 192(1), PP. 1-19. Https://Doi.Org/10.1007/S10661-019-8037-4/Figures/16.
Gao, Z., Gao, W. & Chang, N.B., 2011, Integrating Temperature Vegetation Dryness Index (Tvdi) and Regional Water Stress Index (Rwsi) for Drought Assessment with the Aid of Landsat Tm/Etm+ Images, International Journal Of Applied Earth Observation And Geoinformation, 13(3), PP. 495-503. Https://Doi.Org/10.1016/J.Jag.2010.10.005.
Ghaedi, S., 2021, Anomalies of Precipitation and Drought in Objectively Derived Climate Regions of Iran, Hungarian Geographical Bulletin, 70(2), PP. 163-174. Https://Doi.Org/ 10.15201/Hungeobull.70.2.5.
Heimann, P. & Isaacs, S., 2018, Regression, Developments In Psychoanalysis, PP. 169-197. Https://Doi.Org/10.4324/9780429473661-5.
Khalili, N., Arshad, M., Farajzadeh, Z., Kächele, H. & Müller, K., 2020, Effect of Drought on Smallholder Education Expenditures in Rural Iran: Implications for Policy, Journal Of Environmental Management, 260, 110136. Https://Doi.Org/10.1016/ J.Jenvman.2020.110136.
Khan, S., Gabriel, H.F. & Rana, T., 2008, Standard Precipitation Index to Track Drought and Assess Impact of Rainfall on Watertables in Irrigation Areas, Irrigation and Drainage Systems, 22, PP. 159-177. Https://Doi.Org/10.1007/S10795-008-9049-3.
Kim, J.S., Jain, S., Lee, J.H., Chen, H. & Park, S.Y., 2019, Quantitative Vulnerability Assessment of Water Quality to Extreme Drought in a Changing Climate, Ecological Indicators, 103, PP. 688-697. Https://Doi.Org/10.1016/J.Ecolind.2019.04.052.
Krak, T., 2021, An Introduction to Imprecise Markov Chains, Optimization under Uncertainty with Applications to Aerospace Engineering, PP. 141-179. Https://Doi.Org/ 10.1007/978-3-030-60166-9_5
Kukunuri, A.N.J., Murugan, D. & Singh, D., 2020, Variance Based Fusion Of Vci And Tci For Efficient Classification Of Agriculture Drought Using Modis Data, Geocarto International. Https://Doi.Org/ 10.1080/10106049.2020.1837256.
Kulshreshtha, S.N., 1998, A Global Outlook for Water Resources to the Year 2025, Water Resources Management, 12(3), PP. 167-184. Https://Doi.Org/10.1023/A:1007957229865
Mckee, T.B., Doesken, N.J. & Kleist, J., 1993, The Relationship of Drought Frequency and Duration to Time Scales, Eighth Conference on Applied Climatology, PP. 17-22.
Mishra, A., Alnahit, A. & Campbell, B., 2021, Impact of Land Uses, Drought, Flood, Wildfire, and Cascading Events on Water Quality and Microbial Communities: A Review and Analysis, Journal of Hydrology, 596, 125707. Https://Doi.Org/ 10.1016/J.Jhydrol.2020.125707.
Mishra, A.K. & Singh, V.P., 2010, A Review of Drought Concepts, Journal of Hydrology, 391(1-2), PP. 202-216. Https://Doi.Org/ 10.1016/J.Jhydrol.2010.07.012.
Mohamadi, S., Sammen, S.S., Panahi, F., Ehteram, M., Kisi, O., Mosavi, A.,… et al., 2020, Zoning Map for Drought Prediction Using Integrated Machine Learning Models With a Nomadic People Optimization Algorithm, Natural Hazards, 104(1), PP. 537-579. Https://Doi.Org/ 10.1007/S11069-020-04180-9/Figures/15.
Mokarram, M., Pourghasemi, H.R., Hu, M. & Zhang, H., 2021, Determining and Forecasting Drought Susceptibility in Southwestern Iran Using Multi-Criteria Decision-Making (Mcdm) Coupled with Ca-Markov Model, Science of the Total Environment, 781, P. 146703.
Https://Doi.Org/10.1016/J.Scitotenv.2021.146703
Mokarram, M., Pourghasemi, H.R., Huang, K. & Zhang, H., 2022, Investigation Of Water Quality And Its Spatial Distribution In The Kor River Basin, Fars Province, Iran, Environmental Research, 204(Pt C) P. 112294. Https://Doi.Org/10.1016/J.Envres. 2021.112294.
Oliver, M.A. & Webster, R., 2007, Kriging: A Method of Interpolation for Geographical Information Systems, International Journal of Geographical Information Systems, 4(3), PP. 313-332. Https://Doi.Org/10.1080/ 02693799008941549.
Phan, V.H., Dinh, V.T. & Su, Z., 2020, Trends in Long-Term Drought Changes in the Mekong River Delta of Vietnam, Remote Sensing, 12(18), P. 2974. Https://Doi.Org/ 10.3390/Rs12182974.
Price, J.C., 1990, U Sing Spatial Context in Satellite Data to Infer Regional Scale Evapotranspiration, Ieee Transactions on Geoscience and Remote Sensing, 28(5), PP. 940-948. Https://Doi.Org/10.1109/36.58983.
Quiring, S.M. & Ganesh, S., 2010, Evaluating the Utility of the Vegetation Condition Index (Vci) for Monitoring Meteorological Drought in Texas, Agricultural and Forest Meteorology, 150(3), PP. 330-339. Https://Doi.Org/10.1016/J.Agrformet.2009.11.015.
Raheli, B., Aalami, M.T., El-Shafie, A., Ghorbani, M.A. & Deo, R.C., 2017, Uncertainty Assessment of the Multilayer Perceptron (Mlp) Neural Network Model with Implementation of the Novel Hybrid Mlp-Ffa Method for Prediction of Biochemical Oxygen Demand and Dissolved Oxygen: A Case Study of Langat River, Environmental Earth Sciences, 76(14), PP. 1-16. Https://Doi.Org/ 10.1007/S12665-017-6842-Z/Tables/8.
Roerink, G.J., Menenti, M. & Verhoef, W., 2000, Reconstructing Cloudfree NDVI Composites Using Fourier Analysis of Time Series, International Journal of Remote Sensing, 21(9), PP. 1911-1917. Https://Doi.Org/10.1080/014311600209814.
Saber, A., James, D.E. & Hannoun, I.A., 2020, Effects of Lake Water Level Fluctuation Due to Drought and Extreme Winter Precipitation on Mixing and Water Quality of an Alpine Lake, Case Study: Lake Arrowhead, California, Science of the Total Environment, 714, P. 136762. Https://Doi.Org/10.1016/J.Scitotenv.2020.136762.
Sandholt, I., Rasmussen, K. & Andersen, J., 2002, A Simple Interpretation of the Surface Temperature/Vegetation Index Space for Assessment of Surface Moisture Status, Remote Sensing of Environment, 79(2-3), PP. 213-224. Https://Doi.Org/10.1016/S0034-4257(01)00274-7.
Spadoni, G.L., Cavalli, A., Congedo, L. & Munafò, M., 2020, Analysis of Normalized Difference Vegetation Index (NDVI) Multi-Temporal Series for the Production of Forest Cartography, Remote Sensing Applications: Society and Environment, 20, P. 100419. Https://Doi.Org/10.1016/J.Rsase. 2020.100419.
Tomaz, A., Palma, P., Fialho, S., Lima, A., Alvarenga, P., Potes, M. & Salgado, R., 2020, Spatial and Temporal Dynamics of Irrigation Water Quality under Drought Conditions in a Large Reservoir in Southern Portugal, Environmental Monitoring and Assessment, 192(2), PP. 1-17. Https://Doi.Org/10.1007/S10661-019-8048-1/Figures/5.
Tran, Q.K., Jassby, D. & Schwabe, K.A., 2017, The Implications of Drought and Water Conservation on the Reuse of Municipal Wastewater: Recognizing Impacts and Identifying Mitigation Possibilities, Water Research, 124, PP. 472-481. Https://Doi.Org/ 10.1016/J.Watres.2017.07.069.
Vicente-Serrano, S.M., López-Moreno, J.I., Drumond, A., Gimeno, L., Nieto, R., Morán-Tejeda, E.,… et al., 2011, Effects of Warming Processes on Droughts and Water Resources in the Nw Iberian Peninsula (1930-2006), Climate Research, 48(2-3), PP. 203-212. Https://Doi.Org/ 10.3354/Cr01002.
Xie, F. & Fan, H., 2021, Deriving Drought Indices from Modis Vegetation Indices (NDVI/EVI) and Land Surface Temperature (Lst): Is Data Reconstruction Necessary?, International Journal of Applied Earth Observation and Geoinformation, 101, P. 102352. Https://Doi.Org/10.1016/J.Jag. 2021.102352.