روشی جدید برای بازنمونه‌برداری اپی‌پلار تصاویر خطی پوش‌بروم مبتنی بر مدل پارامترهای مداری

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی کارشناسی ‌ارشد مهندسی سنجش از دور، دانشگاه صنعتی خواجه نصیرالدین طوسی

2 استاد گروه فتوگرامتری و سنجش از دور، دانشگاه صنعتی خواجه نصیرالدین طوسی

3 استادیار گروه فتوگرامتری و سنجش از دور، دانشگاه صنعتی خواجه نصیرالدین طوسی

4 کارشناس ‌ارشد مهندسی سنجش از دور، دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده

در تصاویر نرمال که براساس هندسۀ اپی‌پلار بازنمونه‌برداری شده‌اند، نقاط متناظر در زوج تصویر در راستای یک سطر یا ستون‌اند و پارالاکس قائم نخواهند داشت. این ویژگی تصاویر نرمال را به‌منزلۀ پیش‌نیاز اصلی طیف وسیعی از کارهای فتوگرامتری نظیر تناظریابی، مثلث‌بندی هوایی خودکار، تولید مدل رقومی زمین، تولید ارتوفتو، و برجسته‌بینی مطرح کرده است. در این مقاله، روش جدیدی مبتنی بر استفاده از مدل پارامترهای مداری برای بازنمونه‌برداری اپی‌پلار تصاویر خطی پوش‌بروم پیشنهاد شده است. روش پیشنهادی براساس تصحیح پارامترهای توجیه خارجی مدل پارامترهای مداری در فضای شیئ توسعه یافته است. از مزایای این مدل می‌شود به امکان تصحیح اثر دید غیرقائم سنجنده به‌واسطۀ تعبیرپذیری فیزیکی پارامترهای مدل و امکان پیاده‌سازی روند پیشنهادی، با استفاده از دیگر مدل‌های مطرح در حوزۀ تصحیح هندسی تصاویر ماهواره اشاره کرد. طبق نتایج حاصل از ارزیابی دقت تصاویر نرمال تولیدشده به روش پیشنهادی در سطح نقاط چک مستقل، متوسط پارالاکس x باقی‌مانده در سطح مدل 73/0 پیکسل حاصل شد که بر کارآیی مدل پیشنهادی دلالت دارد.

کلیدواژه‌ها


عنوان مقاله [English]

A Novel Approach for Epipolar Resampling of Linear Pushbroom Images Based on Orbital Parameters Model

نویسندگان [English]

  • M Jannati 1
  • M.J Valadan Zouj 2
  • A MohammadZadeh 3
  • A. Safdarinezhad 4
1 MSc Student, Department of Remote Sensing Engineering, K. N. Toosi University of Technology
2 Professor, Department of Remote Sensing Engineering, K. N. Toosi University of Technology
3 Assistant Professor, Department of Remote Sensing Engineering, K. N. Toosi University of Technology
4 MSc in Remote Sensing, K. N. Toosi University of Technology
چکیده [English]

In normal images, which resampled according to epipolar geometry, all of spatial displacements of points in the space of stereo images occur only in one direction of the digital image coordinate system. This prominent characteristic makes normalized imagery as an important prerequisite for many photogrammetric activities such as image matching, automatic aerial triangulation, automatic digital elevation model and orthophoto generation, and stereo viewing. In this paper, a novel approach for epipolar resampling of linear pushbroom satellite imagery is proposed based on Orbital Parameters Model (OPM). The proposed method is developed based on modifying the exterior orientation parameters of OPM in the object space. The most prominent advantage of this method is the capability of the correction of off-nadir viewing of the sensor through the physical interpretation of its parameters. Also, there is the capability of implementation of the proposed method by means of other common physical or interpolative mathematical models used in geometric correction of satellite imagery. According to the results, the average reminded vertical parallax x in the digital image coordinate system is determined 0.73 pixels with respect to the independent check points that demonstrates the high performance of the proposed method

کلیدواژه‌ها [English]

  • Epipolar Resampling
  • Linear Pushbroom Imagery
  • Orbital Parameters Model
  1. Alrousan, N., Cheng, P., Petrie, G., Toutin, T. & Zoej, M.J.V., 1997, Automated DEM Extraction and Orthoimage Generation from SPOT Level 1B Imagery, Photogrammetric Engineering and Remote Sensing, 63(8): 965–974.
  2. Bang, K.I., Jeong, J.S., Kim, K. & Cho, W., 2003, Automatic DEM Generation Using IKONOS Stereo Imagery, IEEE International Geoscience and Remote Sensing Symposium, IGARSS’03, Toulouse, France, 21–25 July, 7: 4289–4291.
  3. Cho, W., Schenk, T. & Madani, M., 1992, Resampling Digital Imagery to Epipolar Geometry, IAPRS International Archives of Photogrammetry and Remote Sensing, 29(B3): 404-408.
  4. Cochran, S.D., 1995, Adaptive Vergence for the Stereo Matching of Oblique Imagery, ISPRS Journal of Photogrammetry and Remote Sensing, 50(4): 21–28.
  5. Fraser, C.S. & Yamakawa, T., 2004, Insights into the Affine Model for High-Resolution Satellite Sensor Orien-tation, ISPRS Journal of Photogrammetry and Remote Sensing, 58 (5–6): 275–288.
  6. Gupta, R. & Hartley, R.I., 1997, Linear Pushbroom Cameras, IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(9): 963–975.
  7. Habib, A.F., Kim, E.M., Morgan, M. & Couloigner, I., 2004, DEM Generation from High- Resolution Satellite Imagery Using Parallel Projection Model, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 35, (B1), 393–398.
  8. Habib, A.F., Morgan, M., Jeong, S. & Kim, K.O., 2005a, Analysis of Epipolar Geometry in Linear Array Scanner Scenes, The Photogrammetric Record, 20(109): 27–47.
  9. Habib, A.F., Morgan, M., Jeong, S. & Kim, K., 2005b, Epipolar Geometry of Line Cameras Moving with Constant Velocity and Attitude, Electronics and Telecommunications Research Institute Journal, 27 (2): 172–180.
  10. Hashimoto, T., 2000, DEM Generation from Stereo AVNIR Images, Advances in Space Research, 25 (5): 931–936.
  11. Jaehong, O.H., 2011, Novel Approach to Epipolar Resampling of HRSI and Satellite Stereo Imagery-Based Georeferencing of Aerial Images, Ph.D. Dissertation, Ohio State University.
  12. Jaehong, O.H., Shin, S.W. & Kim, K., 2006, Direct Epipolar Image Generation from IKONOS Stereo Imagery-Based on RPC and Parallel Projection Model, Korean Journal of Remote Sensing, 22 (5): 451–456.
  13. Kim, T., 2000, A Study on the Epipolarity of Linear Pushbroom Images, Photogrammetric Engineering and Remote Sensing, 66 (8): 961–966.
  14. Konecny, G., Lohmann, P., Engel, H. & Kruck, E., 1987, Evaluation of SPOT Imagery on Analytical Photogrammetric Instruments, Photogrammetric Engineering & Remote Sensing, 53(9): 1223-1230.
  15. Kornus, W., Alamús, R., Ruiz, A. & Talaya, J., 2006, DEM Generation from SPOT-5 3-Fold along Track Stereoscopic Imagery Using Autocalibration, ISPRS Journal of Photogrammetry and Remote Sensing, 60 (3): 147–159.
  16. Kraus, K., 1993, Photogrammetry, Dümmler Verlag, Bonn., Vol. 1, p. 397.
  17. Lee, H.Y., Kim, T., Park, W. & Lee, H.K., 2003, Extraction of Digital Elevation Models from Satellite Stereo Images through Stereo Matching Based on Epipolarity and Scene Geometry, Image and Vision Computing, 21 (9): 789–796.
  18. Lee, H.Y. & Park, W., 2002, A New Epipolarity Model Based on the Simplified Pushbroom Sensor Model, International Achieves of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 34 (4): 631–636.
  19. McGlone, C., 1996, Sensor Modeling in Image Registration, Digital Photogrammetry: An Addendum (C. W. Greve, editor), American Society of Photogrammetry and Remote Sensing, Bethesda, Maryland, 115-123.
  20. Morgan, M., 2004, Epipolar Resampling of Linear Array Scanner Scenes, Ph.D. Dissertation, University of Calgary, Canada, 187p.
  21. Morgan, M., Kim, K., Jeong, S. & Habib, A., 2004a, Indirect Epipolar Resampling of Scenes Using Parallel Projection Modeling of Linear Array Scanners, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 35(B3): 508–513.
  22. Morgan, M., Kim, K., Jeong, S. & Habib, A., 2004b, Epipolar Geometry of Linear Array Scanners Moving with Constant Velocity and Constant Attitude, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 35, (B3), 52–57.
  23. Morgan, M., Kim, K., Jeong, S. & Habib, A., 2006, Epipolar Resampling of Spaceborne Linear Array Scanner Scenes Using Parallel Projection, Photogrammetric Engineering and Remote Sensing, 72 (11): 1255–1263.
  24. Okamoto, A., Akamatu, S. & Hasegawa, H., 1992, Orientation Theory for Satellite CCD Line-Scanner Imageries of Hilly Terrains, IAPRS International Archives of Photogrammetry and Remote Sensing, 29(B2): 217-222.
  25. Okamoto, A., Ono, T. & Akamatsu, S. , 1999, Geometric Characteristics of Alternative Triangulation Models for Satellite Imagery, Proceedings of the ASPRS 1999 Annual Conference, 17-21 May, Portland, Oregon (American Society for Photogrammetry and Remote Sensing, Bethesda, Maryland), unpaginated CD-ROM.
  26. Ono, T., Honmachi, Y. & Ku, S., 1999, Epipolar Resampling of High Resolution Satellite Imagery, Joint Workshop of ISPRS, WG I/1, I/3 and IV/4 Sensors and Mapping from Space.
  27. Poli, D., 2005, Modelling of Spaceborne Linear Array Sensors, Ph.D. Dissertation, University College London, United Kingdom.
  28. Safdarinezhad, A.R., 2012, Using Additional Parameters in Orbital Parameters Model for Improvement of Precision of Geometric Correction of Satellite Images, M.sc. thesis, p. 155.
  29. Schenk, T., 1990, Computation of Epipolar Geometry, Technical Notes in Photogrammetry, No. 5, Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University.
  30. Seeber, G., 2003, Satellite Geodesy, Walter de Gruyter, Berlin, p. 589, ISBN 3-11-017549-5.
  31. Su, J.Y., 2002, Study of SPOT Epipolar Image Polynomial Fitting Based on Matching Constraint, Remote Sensing Information, 10 (4): 11–14.
  32. Torr, P.H.S., 2002, Bayesian Model Estimation and Selection for Epipolar Geometry and Generic Manifold Fitting, International Journal of Computer Vision, 50 (1): 35–61.
  33. Toutin, T., 2006, Comparison of 3D Physical and Empirical Models for Generating DSMs from Stereo HR Images, Photogrammetric Engineering & Remote Sensing, 72(5): 597–604.
  34. Valadan Zoej, M.J., 1997, Photogrammetric Evaluation of Space Linear Array Imagery for Medium Scale Topographic Mapping, Ph.D. Thesis, University of Glasgow, 303p.
  35. Wang, M., Hub, F. & Li, J., 2011, Epipolar Resampling of Linear Pushbroom Satellite Imagery by a New Epipolarity Model, ISPRS Journal of Photogrammetry and Remote Sensing, 66: 347–355.
  36. Wolf, P.R. & Dewitt, B.A., 2000, Elements of Photogrammetrywith Applications in GIS, 3/e. McGraw-Hill, Toronto, 608p.
  37. Zhang, Z., Deriche, R., Faugeras, O. & Luong, Q., 1995, A Robust Technique for Matching Two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry, Artificial Intelligence Journal, 78: 87-119.
  38. Zhang, Z.Y., 1998, Determining Epipolar Geometry and Its Uncertainty: A Review, International Journal of Computer Vision, 27 (2): 161–195.
  39. Zhao, D., Yuan, X.X. & Liu, X., 2008, Epipolar Line Generation from IKONOS Imagery Based on Rational Function Model, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37 (B4): 1293–1297.