پایش مکانی خشکسالی با استفاده از شاخص‌های سنجش از دوری (مطالعۀ موردی: استان سیستان و بلوچستان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه جغرافیا، پردیس علوم انسانی و اجتماعی، دانشگاه یزد، یزد، ایران

2 استاد گروه جغرافیا، پردیس علوم انسانی و اجتماعی، دانشگاه یزد، یزد، ایران

چکیده

سابقه و هدف: پایش خشکسالی به‌دلیل تأثیرات گستردۀ آن در اقتصاد، محیط‌زیست و جامعه، مسئله‌ای حیاتی است. برای پایش دقیق خشکسالی، داده‌های جامع و یکپارچۀ هواشناسی و هیدرولوژیکی ضروری است؛ به‌ویژه در مناطقی مانند استان سیستان و بلوچستان که با خشکسالی شدید مواجه است. مطالعات اقلیمی نشان می‌دهد که استان سیستان و بلوچستان، به‌دلیل عوامل اقلیمی مانند بارندگی اندک، تبخیر بالا، بادهای شدید و پوشش گیاهی محدود، به منطقه‌ای خشک و بسیار مستعد خشکسالی‌های طولانی‌مدت تبدیل شده است.
مواد و روش‌ها: در این پژوهش، برای ارزیابی جامع خشکسالی در استان سیستان و بلوچستان، از داده‌های ماهواره‌ای مادیس و گریس بهره گرفته شد و شاخص پوشش گیاهی VHI برای پایش تغییرات پوشش گیاهی و شاخص TSDI برای تحلیل تغییرات منابع آب زیرزمینی به کار رفت. برای اعتبارسنجی نتایج، داده‌های رطوبت خاک GLDAS به‌منزلۀ دادۀ مرجع در نظر گرفته شد. با توجه به محدودیت‌های داده‌ای گریس، دورۀ مشترک شانزده‌ساله (2002-2017) برای تحلیل انتخاب شد. همچنین، برای بررسی روندهای بلندمدت خشکسالی، شاخص SPEI طی دورۀ سی‌ساله (1987-2018) محاسبه شد.
نتایج: از لحاظ جغرافیایی، نقشه‌های VHI نشان داد استان سیستان و بلوچستان، در تمامی سال‌ها، با خشکسالی متوسط و ملایم روبه‌رو بوده و در سال‌های منتهی به دورۀ مطالعاتی، بر شدت خشکسالی‌ها افزوده شده است. به‌منظور پایش خشکسالی هیدرولوژیکی، از محصول ماهواره‌ای گریس استفاده شده است که تغییر در مقدار آب زمینی را اندازه‌گیری می‌کند. نتایج مطالعۀ شاخص TSDI مفهوم کمّی خشکسالی را پوشش می‌دهد. این شاخص، با هدف پایش خشکسالی هیدرولوژیکی، در تمامی حوضه‌های آبریز درجۀ 3 (پنجاه حوضه) محاسبه شد. فرایند پایش خشکی، در گام نخست، با محاسبۀ کسری خشکسالی به‌منزلۀ ماه‌هایی با TWSA منفی به‌صورت چهار ماه متوالی تعریف شد. نتایج میزان افزایش کسری خشکسالی، از جنوب به شمال استان مورد مطالعه را به‌خوبی به نمایش گذاشته است. تمامی حوضه‌ها، تقریباً از 2011، با کسری‌های بزرگی مواجه بودند. این مطالعه، ازطریق برآورد کسری و کاهش ذخیرۀ کلی آب زمینی در ماه آوریل، نشان داد تمامی حوضه‌ها، در سال‌های منتهی به پایان دورۀ مطالعاتی، شاهد کمبود ذخیرۀ آب، آن هم در محدودۀ خطرناک و استثنایی بوده‌اند.
نتیجه‌گیری: نتایج حاصل از VHI نشان داد که استان مورد مطالعه، در سال‌های اخیر، دچار خشکسالی گسترده‌ای شده است. مناطق جنوبی و مرکزی استان با کلاس‌های شدیدتر خشکسالی مواجه بوده‌اند. تحلیل نمودارهای شاخص خشکسالی، در کلاس‌های متفاوت شدت خشکسالی، تأیید می‌کند که همۀ حوضه‌های آبریز با شرایط خشکسالی، به‌ویژه در سال‌های اخیر، روبه‌رو بوده‌اند. داده‌ها نشان می‌دهند که استان با بحران شدید آب مواجه است. اقدامات فوری و هماهنگ برای مقابله با این چالش ضروری است.

کلیدواژه‌ها


عنوان مقاله [English]

Spatial Monitoring of Drought Using Remote Sensing Indices, Case Study: Sistan and Baluchestan Province

نویسندگان [English]

  • massumeh nabavi zadeh 1
  • Kamal Omidvar 2
1 Ph.D. Students, Dep. of Geography, Campus of Humanities and Social Sciences, Yazd University, Yazd, Iran
2 Prof. of Geography, Campus of Humanities and Social Sciences, Yazd University, Yazd, Iran
چکیده [English]

Introduction: Drought monitoring is crucial due to its widespread impacts on the economy, environment, and society. To monitor droughts accurately, comprehensive and integrated meteorological and hydrological data are essential, particularly in areas such as Sistan and Baluchestan Province, which is facing a severe drought. Climatic studies indicate that Sistan and Baluchestan province has evolved into an arid region highly susceptible to prolonged droughts due to a combination of climatic factors such as low precipitation, high evaporation rates, strong winds, and limited vege-tation cover. Based on research conducted between 2000 and 2015, approximately 58% of the province's total area has been directly affected by drought. These findings align with previous studies, which have shown that dry years with below-average rainfall constitute more than 52% of the province's climatic record.
Materials and methods: In this study, MODIS and GRACE satellite data were utilized to comprehensively assess drought in Sistan and Baluchestan province. The Vegetation Health Index (VHI) was employed to monitor vegetation changes, while the Terrestrial Water Storage (TSDI) was used to analyze groundwater variations. The Global Land Data Assimilation System (GLDAS) soil moisture data served as a reference for result validation. Given the limitations of GRACE data, a 16-year common period (2002-2017) was selected for the analysis. Additionally, the Standardized Precipitation Evapotranspiration Index (SPEI) was calculated over a 30-year period (1987-2018) to examine long-term drought trends.
Results and discussion: Geographically, VHI drought maps revealed that Sistan and Baluchestan province has experienced moderate to severe drought throughout the study period, with increasing drought severity in the years leading up to the study. To monitor hydrological drought, GRACE satellite data was utilized to measure changes in terrestrial water storage. This is a significant step in comprehensively understanding hydrological drought in the study province. The TSDI index, a quantitative measure of drought, was calculated to monitor hydrological drought in all 50 third-level sub-basins. The drought monitoring process began by calculating the deficit, defining drought as four consecutive months with negative TWSA. Results clearly show an increasing drought deficit from south to north in the study province. Almost all basins experienced large deficits from 2011 onwards. By estimating the deficit and the overall decrease in groundwater storage in April, this study demonstrated that all basins were experiencing a water storage deficit in the critical and exceptional range in the years leading up to the end of the study period.
Conclusion: Results from the VHI revealed that the study province has experienced widespread drought in recent years. The southern and central regions of the province have faced more severe drought classes. Analysis of drought index graphs across different severity classes confirmed that all watersheds have experienced drought conditions, particularly in recent years. Data analysis indicates a severe water crisis in the province. Urgent and coordinated actions are required to address this challenge. Shifting to drought-resistant crops, improving irrigation efficiency, and securing water rights are essential steps towards a sustainable future.

کلیدواژه‌ها [English]

  • Vegetation Health Index (VHI)
  • Total Ground Water Storage Deficit (TWS)
  • Hydrological Drought
  • GLDAS data of moisture of soil
  • Standardized Precipitation-Evaporation and Transpiration Index (SPEI)
  • Sistan and Baluchestan provice

 

Agboma, C., Yirdaw, S., & Snelgrove, K. (2009). Intercomparison of the total storage deficit index (TSDI) over two Canadian Prairie catchments. Journal of hydrology, 374(3-4), 351-359. https://doi.org/ 10.1016/ j.jhydrol.2009.06.034
 
Ahmadi_baseri, N., Sabziparvar, A., & Arboledas, M. K. A. (2020). Assessment of the Performance of the Global Land Data Assimilation System (GLDAS) in Estimating Daily Surface Solar Radiation in Iran. Water and soil magazine, 34(2), 501-513. https://doi.org/10.22067/jsw.v34i2.82848
Anyamba, A., & Tucker, C. J. (2005). Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003. Journal of arid environments, 63(3), 596-614. https:// doi.org/10.1016/j.jaridenv. 2005.03.007
Bajgiran, P. R., Darvishsefat, A. A., Khalili, A., & Makhdoum, M. F. (2008). Using AVHRR-based vegetation indices for drought monitoring in the Northwest of Iran. Journal of arid environments, 72(6), 1086-1096. https: //doi.org/10.1016/j.jaridenv.2007.12.004
BAJGIRAN, P. R., Shimizu, Y., Hosoi, F., & OMASA, K. (2009). MODIS vegetation and water indices for drought assessment in semi-arid ecosystems of Iran. Journal of Agricultural Meteorology, 65(4), 349-355. https://doi.org/10.2480/agrmet.65.4.4
Cao, Nan, Z., & Cheng, G., 2015, "GRACE Gravity Satellite Observations of Terrestrial Water Storage Changes for Drought Characterization in the AridLand of Northwestern China", Remote Sensing, 7(1), 1021–1047. https://doi.org/10.3390/rs12030530
Chen, J., Wilson, C., Tapley, B., Longuevergne, L., Yang, Z., & Scanlon, B. (2010). Recent La Plata basin drought conditions observed by satellite gravimetry. Journal of Geophysical Research: Atmospheres, 115(D22). https://doi.org/10.1029/2010JD014689
Faraji, Z., Kaviani, A., & Shakiba, A. (2017). Evaluation of Evapotranspiration, Precipitation and Air Temperature from Global Land Data Assimilation System (GLDAS) by Lysimeter Data in Qazvin. Journal of water and soil protection research, 24(3), 283-297. https://doi.org/ 10.22069/jwfst.2017.11535.2630
Han, Y., Li, Z., Huang, C., Zhou, Y., Zong, S., Hao, T., Niu, H., & Yao, H. (2020). Monitoring droughts in the Greater Changbai Mountains using multiple remote sensing-based drought indices. Remote Sensing, 12(3), 530. https://doi.org/10.3390/rs12030530
Kahkhakohan, M. S., Fordoie, A. R., Mousavi, S. H., & Vali, A. (2019). Assessment of drought dynamics in Sistan and Baluchestan province using MODIS satellite data (2000-2015).
Khosravi, M. (2009). The environmental effects of the interaction of Hirmand river fluctuations with the 120-day winds of Sistan. Publication: Geographical Research, 19-48. https://doi.org/https://www.iwrr.ir/article_15984.html
Kogan, F. N. (1995). Application of vegetation index and brightness temperature for drought detection. Advances in space research, 15(11), 91-100. https://doi.org/10.1016/0273-1177(95)00079-T
Liu, W. T., Massambani, O., & Nobre, C. A. (1994). Satellite recorded vegetation response to drought in Brazil. International Journal of climatology, 14(3), 343-354. https://doi.org/ 10.1002/joc.3370140307
Lorenzo-Lacruz, J., Vicente-Serrano, S. M., López-Moreno, J. I., Beguería, S., García-Ruiz, J. M., & Cuadrat, J. M. (2010). The impact of droughts and water management on various hydrological systems in the headwaters of the Tagus River (central Spain). Journal of hydrology, 386(1-4), 13-26. https://doi.org/10.1016/j.jhydrol.2010.01.001
Mahmoudi, P., Shirazi, S. A., Firoozi, F., Jahanshahi, S. M. A., & Mazhar, N. (2020). Detection of land cover changes in Baluchistan (shared between Iran, Pakistan, and Afghanistan) using the MODIS Land Cover Product. Arabian Journal of Geosciences, 13, 1-14. https://doi.org/ 10.1007/s12517-020-06284-9
Malo, A. R., & Nicholson, S. E. (1990). A study of rainfall and vegetation dynamics in the African Sahel using normalized difference vegetation index. Journal of arid environments, 19(1), 1-24. https://doi.org/ 10.1016/S0140-1963(18)30825-5
Miri, M., Azizi, G., Mohammadi, H., & Pourhashemi, M. (2018). Introduction and Evaluation of Global Model of Land Data Assimilation. Sepehr scientific-research quarterly magazine of geographical information, 26(104), 5-17. https://www.sid.ir/ paper/253233/fa
Morid, S., Smakhtin, V., & Moghaddasi, M. (2006). Comparison of seven meteorological indices for drought monitoring in Iran. International Journal of Climatology: A Journal of the Royal Meteorological Society, 26(7), 971-985. https://doi.org/10.1002/ joc.1264
Narasimhan, B., & Srinivasan, R. (2005). Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agricultural and forest meteorology, 133(1-4), 69-88. https://doi.org/ 10.1016/j.agrformet.2005.07.012
Nasr-Azadegan, A., Shams, S., & Fardا, H. K. (2014). Investigating changes in soil moisture and precipitation and their impact on dust production in Mesopotamia between 2001 and 2014. The third regional conference on climate change and global warming, https://civilica.com/doc/732049
Niazi, Y., Talebi, A., & Doust, M. H. M. M. V. (2018). Agricultural drought monitoring and analysis using NOAA-AVHRR satellite products. Geographic information (sephar), 107(27), 179-192. https://doi.org/10.22131/ sepehr.2018.33574
Pakdel_Khosmakhi, H., Tizrou, A. T., Maarofi, S., & Dost, M. V. (2014). Evaluation of precipitation and runoff product from GLDAS global land data assimilation system The second national conference on engineering and management of agriculture, environment and sustainable natural resources, https://civilica.com/doc/357788
Parry, S., Wilby, R. L., Prudhomme, C., & Wood, P. J. (2016). A systematic assessment of drought termination in the United Kingdom. Hydrology and Earth System Sciences, 20(10), 4265-4281. https://doi.org/ 10.5194/hess-20-4265-2016
Piri, H., & Ansari, H. (2013). Studying the drought of the Sistan plain and its impact on Hamon International Wetland. Wetland ecobiology, 15, 74-63. https://www.sid.ir/ paper/174970/fa
Piri, H., Rahdari, V., & Maleki, S. (2013). Study and compare performance of four meteorological drought index in the risk management droughts in Sistan and Baluchestan province. Irrigation and Water Engineering, 3(3), 96-114.
Ramillien, G., Cazenave, A., & Brunau, O. (2004). Global time variations of hydrological signals from GRACE satellite gravimetry. Geophysical Journal International, 158(3), 813-826. /https://doi.org/ 10.1111/j.1365-246X.2004.02328.x
Swenson, S., & Wahr, J. (2002). Methods for inferring regional surface‐mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time‐variable gravity. Journal of Geophysical Research: Solid Earth, 107(B9), ETG 3-1-ETG 3-13. https://doi.org/https://doi.org/ 10.1029/2001JB000576
Syed, T. H., Famiglietti, J. S., Rodell, M., Chen, J., & Wilson, C. R. (2008). Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resources Research, 44(2). https://doi.org/10.1029/ 2006WR005779
Thomas, A. C., Reager, J. T., Famiglietti, J. S., & Rodell, M. (2014). A GRACE‐based water storage deficit approach for hydrological drought characterization. Geophysical Research Letters, 41(5), 1537-1545. https://doi.org/10.1002/2014GL059323
UNESCO. (2022). Integrated drought risk management, DRM: national framework for Iran, an analysis report (Tech. Rep.). Situation Report https://reliefweb.int/report/ iran-islamic-republic/iran-droughts-operation-update-report-n-1-dref-n-mdrir005.
Vicente-Serrano, S. M., Pons-Fernández, X., & Cuadrat-Prats, J. (2004). Mapping soil moisture in the central Ebro river valley (northeast Spain) with Landsat and NOAA satellite imagery: a comparison with meteorological data. International Journal of Remote Sensing, 25(20), 4325-4350. https://doi.org/10.1080/01431160410001712990
Wanders, N., van Lanen, H. A., & van Loon, A. F. (2010). Indicators for drought characterization on a global scale.
Yirdaw, S. Z., Snelgrove, K. R., & Agboma, C. O. (2008). GRACE satellite observations of terrestrial moisture changes for drought characterization in the Canadian Prairie. Journal of hydrology, 356(1-2), 84-92. https://doi.org/10.1016/j.jhydrol.2008.04.004
Zare-Abianeh, H., Sabzi-Parvar, A. A., Maroufi, S., Qiami, F., & Kazemi, S. S. M.-M. A. (2015). Meteorological drought analysis and monitoring in Sistan and Baluchistan region. Environmental Science and Technology Quarterly, 3(15), 49-61. https://doi.org/ 10.22034/GAHR.2020.109953
Zhang, D., Zhang, Q., Werner, A. D., & Liu, X. (2016). GRACE-based hydrological drought evaluation of the Yangtze River Basin, China. Journal of Hydrometeorology, 17(3), 811-828. https://doi.org/10.1175/JHM-D-15-0084.1