برآورد کربنات‌کلسیم خاک با استفاده از تصاویر ماهواره‌ای و طیف‌سنجی فروسرخ نزدیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد علوم و مهندسی خاک، دانشکدۀ کشاورزی، دانشگاه ملایر، ملایر، ایران

2 استادیار گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه ملایر، ملایر، ایران

چکیده

سابقه و هدف: از مزایای دانش سنجش از دور و طیف‌سنجی مرئی‌ فروسرخ نزدیک، سرعت و سادگی و هزینۀ اندک آن، در مقایسه با روش قدیمی است. سنجش از دور دانش گردآوری داده‌ها، با حداقل تماس مستقیم فیزیکی با اشیای مورد اندازه‌گیری است. طیف‌سنجی مرئی‌ فروسرخ نزدیک دامنه‌ای از جذب را با سرعت آنالیز بالا، در مقایسه با روش سنتی، برآورد می‌کند. هدف از این تحقیق به‌کاربردن داده‌های ماهوارۀ لندست 8 و طیف فروسرخ نزدیک، در کاربری‌های کشاورزی و جنگل در دشت گیان نهاوند، استان همدان، برای تخمین کربنات‌کلسیم ‌خاک است.
مواد و روش‌ها: 48 نمونۀ خاک از عمق 30- 0 سانتی‌متری برداشته و سپس هواخشک، و از الک دومیلی‌متری عبور داده شد. برخی ویژگی‌های فیزیکی و شیمیایی خاک‌ها اندازه ‌گرفته شد. به‌منظور مطالعات سنجش از دور، تصویر لندست 8 متعلق به تاریخ نمونه‌برداری (سپتامبر 2019) به کار رفت. مقادیر محاسبه‌شدۀ هریک از قطعات نمونه در محیط ERDAS imagine 9.1 ایجاد شد. ارزش هر باند، برای 48 نقطه، در محیط اکسل وارد و در نهایت، مراحل توصیف‌های آماری متغیرها انجام شد. در روش سنجش از دور، انعکاس طیفی نمونه‌ها روی ده باند اصلی استخراج و پردازش شد. سپس همبستگی بین ارزش باندهای اصلی، ترکیب باندها، و شاخص‌های کلسیت با مقدار کلسیت خاک انجام شد. با برازش انواع رگرسیون‌های چندمتغیره بدون حذف داده‌های پرت، بهترین مدل انتخاب شد. آنالیز طیفی خاک‌های مورد نظر با استفاده از دستگاه طیف‌سنج زمینی، با دامنۀ طول‌موج 2500-350 نانومتر، انجام شد. پس از ثبت طیف‌ها، انواع روش‌های پیش‌پردازش مورد ارزیابی قرار گرفت. همبستگی پیرسون و رگرسیون خطی در محیط SPSS 24.1 سنجیده شد.
نتایج و بحث: نتایج آزمایشگاهی نشان داد که میانگین کربنات‌کلسیم خاک، در کاربری کشاورزی و جنگل، به‌ترتیب 30 و 22/22% است. طبق نتایج، باندهای 10 و 11 رابطه معنی‌داری با کلسیت خاک در کاربری جنگل داشته‌اند (05/0>p). دوازده ترکیب باندی در سطح 5% و شش ترکیب باندی در سطح 1% با میزان کلسیت خاک، ارتباط معنی‌داری نشان دادند. همچنین شاخص R1 ((باند 2/ باند 5)/(باند 4/ باند 5))، با کلسیت خاک، رابطه معنی‌داری داشت (05/0>p). رگرسیون بین کلسیت محاسبه‌شده در آزمایشگاه و معادلۀ حاصل از تصویر ماهواره‌ای، در کاربری‌های کشاورزی، برابر (45/0=r2) به ‌دست آمد. در روش طیف‌سنجی، بیشترین همبستگی در طول‌موج‌ 612 نانومتر (**85/0=r2) مشاهده شد. براساس مدل‌سازی با رگرسیون حداقل مربعات جزئی (PLSR)، مقدار ضریب تبیین در گروه کالیبراسیون درمورد کلسیت 8/0 و مقادیر RMSE برابر با 8/4%، مقدار ضریب تبیین در گروه اعتبارسنجی برابر با 5/0 و مقدار RMSE برابر با 8/7% محاسبه شد. از بین مدل‌های برازش‌یافته با رگرسیون چندمتغیره، در تصاویر ماهواره‌ای، مدل SMLR برای برآورد کلسیت مناسب به نظر می‌رسد. مدل رگرسیونی حداقل مربعات جزئی، برای برآورد کلسیت به‌روش طیف‌سنجی نیز، تقریباً مناسب بوده است.
نتیجه‌گیری: نتایج کلی نشان داد که مدل برآوردشده از روش آماری رگرسیون، در سنجش از دور، توانسته است میزان کلسیت خاک را در اراضی کشاورزی برآورد کند و میزان به‌دست‌آمده براساس روش سنجش از دور و آزمایشگاه اختلاف ناچیزی با یکدیگر دارند. بنابراین می‌توان گفت روش سنجش از دور، در برآورد کلسیت خاک، موفق بوده است. نتایج طیف‌سنجی نیز نشان داد که مدل PLSR، در برآورد مقدار کلسیت خاک، مدل مناسبی است؛ به‌شرط آنکه تعداد نمونه‌ها بیشتر باشد. در برآورد کلی، می‌توان نتیجه گرفت روش طیف‌سنجی مرئی‌ فروسرخ نزدیک دارای صحت بیشتری از روش سنجش از دور و تیتراسیون است؛ منتها به تعداد نمونه‌های‌ بیشتری نیاز دارد. توصیه می‌شود، برای افزایش صحت کار، تعداد نمونه‌های طیف‌سنجی افزایش یابد و برای مقایسۀ بهتر بین دو کاربری نیز، تعداد نمونه‌های انتخابی برابر باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Soil Calcium Carbonate Using of Satellite Images and NIR Spectroscopy

نویسندگان [English]

  • Parinaz Abdoli 1
  • Sohayla Hashemi 2
1 M.Sc. of Soil Science, Faculty of Agriculture, Malayer University, Malayer, Iran
2 Assistant Prof., Dep. of Soil Science, Faculty of Agriculture, Malayer University, Malayer, Iran
چکیده [English]

Introduction: One of the advantages of remote sensing and visible-near infrared (Vis–NIR) spectroscopy is the speed, simplicity, and cost-effectiveness of analysis compared to traditional methods. Remote sensing is a scientific discipline that involves collecting data while minimizing direct physical contact with the objects being studied. To fully leverage the rapid analysis capabilities of Vis–NIR spectroscopy, it is essential to exploit its advantages over conventional analytical techniques. The aim of this research is to utilize Landsat 8 satellite sensors and the near-infrared spectrum for agricultural and forestry applications in the Gyan Nahavand plain of Hamadan Province to estimate soil calcium carbonate.
Material and methods: Forty-eight soil samples were collected from the surface layer (0-30 cm), followed by air drying and sieving to a 2-mm particle size. Several physicochemical characteristics of the soils were analyzed. A Landsat 8 image from September 2019 was utilized for remote sensing studies. The calculated values for each sample unit were generated using ERDAS Imagine 9.1 software. The values for each band at the 48 sampling points were entered into Excel, and the variables were statistically described. In the remote sensing method, the spectral reflectance of the samples was extracted and processed across ten primary bands. In addition to the primary bands, combinations of bands and calcite indices were also employed. Correlations between the values of the primary bands, band compositions, calcite indices, and the amount of soil calcite were analyzed. The best model was selected by fitting various multivariate regressions without excluding outlier data. Spectral analysis of the targeted soils was conducted using a FieldSpec 3 spectroradiometer, with a wavelength range of 350-2500 nm. After recording the spectra, various preprocessing methods were evaluated. The Pearson correlation test and linear regression analyses were performed using SPSS 24.1 software.
Results and discussion: Laboratory results indicated that the average soil calcium carbonate content in agricultural and forested areas was 30% and 22.22%, respectively. The findings revealed that bands 10 and 11 exhibited a significant correlation with soil calcite in forested areas (p < 0.05). Twelve band compositions at the 5% significance level and six band compositions at the 1% significance level demonstrated a significant correlation with the amount of soil calcite. Additionally, the R1 index ((Band5/Band4)/(Band5/Band2)) showed a significant correlation with soil calcite (p < 0.05). The correlation between the measured calcite in the laboratory and the equation derived from satellite imagery was found to be moderate (r² = 0.45) for agricultural use. In the spectroscopic analysis, the highest correlation was observed at a wavelength of 612 nm (r² = 0.85**). Based on modeling using Partial Least Squares Regression (PLSR), the determination coefficient for the calibration group for calcite was 0.8, with a Root Mean Square Error (RMSE) of 4.8%. In the validation group, the determination coefficient was 0.5, and the RMSE was 7.8%. Among the models fitted using multivariate regression with satellite images, the Stepwise Multivariate Linear Regression (SMLR) model is recommended as a suitable approach for estimating calcite. The Partial Least Squares Regression (PLSR) model has also proven to be nearly suitable for estimating calcite using the spectroscopic method.
Conclusion: The overall results indicate that the model developed using regression statistical methods in remote sensing has effectively estimated the amount of soil calcite in agricultural lands. The quantities obtained through remote sensing and laboratory analyses show minimal differences. Therefore, it can be concluded that the remote sensing method is successful in estimating soil calcite levels. Additionally, the results from spectrometry demonstrate that the PLSR model is suitable for estimating soil calcite, provided that a larger number of samples is utilized. In general, we can conclude that the Vis-NIR spectroscopy method offers greater accuracy compared to remote sensing and titration methods, although it requires a more extensive sample set. It is recommended to increase the number of spectroscopic samples to enhance the accuracy of the findings and to ensure that the same number of samples is used for a more effective comparison between the two land uses.

کلیدواژه‌ها [English]

  • Gyan
  • Landsat 8
  • Land use
  • Calcite
Askari, M.S., Rourke, Sh.M. & Holden, N.L., 2015, Evaluation of Soil Quality for Agricultural Production Using Visible Near Infrared Spectroscopy, Geoderma, 243(244), PP. 80–91. https://doi.org/10.1016/ j.geoderma.2014.12.012.
Banaei, M.H., 1998, Soil Moisture and Temperature Regimes Map of Iran, Soil and Water Research Institute of Iran.
Ben-Dor, E. & Banin, A., 1994, Visible and Near Infrared (0.4-1.1 mm) Analysis of Arid and Semiarid Soils, Remote Sensing of Environment, 48, PP. 261–274. https://doi.org/ 10.1016/0034-4257 (94)90001-9.
Cozzolino, D. & Moron, A., 2003, The Potential of Near Infrared Reflectance Spectroscopy to Analyze Soil Chemical and Physical Characteristics, Journal Agricultural Science, 140, PP. 65–71. https://doi.org/ 10.1017/S0021859602002836.
Danesh, M., Bahrami, H.A., Alavipanah, S.K. & Norouzi, A.A., 2009, The Investigation of Particlesdiameter Geometric Mean and Soil Calcite by Using Remote Sensing Data (study area: west southern of Lorestan province, Poldokhtar area), Iran Geology Journal, 10, PP. 25–36. https://dorl.net/dor/ 20.1001.1.16807073.2010.12.4.4.6.
Doner, H.E. & Lynn, W.C., 1989, Carbonate, Halide, Sulfate and Sulfide Minerals, Minerals in the Soil Environment, 13, PP. 279–330.
Fang, Q., Hong, H., Zhao, L., Kukolich, S., Yin, K. & Wang, Ch., 2018, Visible and Near-Infrared Reflectance Spectroscopy for Investigating Soil Mineralogy: A Review, Journal of Spectroscopy, 168974. https://doi.org/10.1155/2018/3168974.
Fatemi, S.B. & Rezaei, Y., 2013, Introduction to Remote Sensing, BualiSina University Press, Hamadan.
Forkuor, G., Hounkpatin, O.K.L., Welp, G. & Thiel, M., 2017, High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models, PLoS ONE, 12(1), P. e0170478. https://doi:10.1371/  journal. pone.0170478.
Gee, G.W. & Bauder, J.W., 1986, Particle-Size Analysis, In: Methods of Soil Analysis Part I, Physical and Mineralogical Methods, Edited by: Klute A. Soil Science Society of America, Madison, WI, USA.
Hassani, A., Bahrami, H.A., Noroozi, A.A. & Ostan, Sh., 2014, Visible-Near Infrared Reflectance Spectroscopy for Assessment of Soil Properties in Gypseous and Calcareous Soils, Watershed Engineering and Management, 6(2), PP. 234–245. https://doi.org/10.22092/ijwmse.2014.101721.
 
Hunt, G.R., 1980, Spectroscopy Properties of Rock and Minerals, In: Handbook of Physical Properties of Rocks. Edited by: Stewart, C.R., CRC Press Inc, Florida.
Islam, K., Singh, B. & McBratney, A., 2003, Simultaneous Estimation of Several Soil Properties by Ultraviolet Visible and Near Infrared Reflectance Spectroscopy, Australian Journal Soil Research, 41, PP. 1101–1114. https://doi.org/10.1071/SR02137.
Khayamim, F., Wetterlind, J., Khademi, H. & Stenberg, B., 2015, Using Visible and Near Infrared Spectroscopy to Estimate Carbonates and Gypsum in Soils in Arid and Sub humid Regions of Isfahan, Iran. J. of Near Infrared Spectroscopy, 23, PP. 155–165. https://doi.org/10.1255/jnirs.1157.
Kuang, B. & Mouazen, A.M., 2012, Influence of the Number of Samples on Prediction Error of Visible and Near Infrared Spectroscopy of Selected Soil Properties at the Farm Scale. J. Soil Science, 63(3), PP. 421–429. https://doi.10.1111/j.1365-2389. 2012.01456.x.
Loeppert, R.H., Hallmark, C.T. & Koshy, M.M., 1984, Routine Procedure for Rapid Determination of Soil Carbonates, Soil Science Society of America Journal, 48(5), PP. 1030–1033. https://doi.org/10.2136/ sssaj1984.03615995004800050016x.
Loppert, R.H. & Suarez, D.L., 1996, Carbonate and Gypsum, In: Method of soil analysis. Part III, 3rd Ed, Edited by: Sparks, D.L., American Society of Agronomy, Madison, WI. USA. PP. 437–474.
Meti, S., Hanumesh, S., Lakshmi, P.D., Nagaraja, M.S. & Shreepad, V., 2019, Sentinel2 and Landsat-8 Bands Sensitinity Analysis for Mapping of Alkaline Soil in Northern Dry Zone of Karnataka, India, Workshop on “Earth Observations for Agricultural Monitoring”, 18–20 February. New Delhi, India. https://doi.org/10.5194/ isprs-archives-XLII-3-W6-307-2019.
Mc-Lean, E.O., 1982, Soil pH and Lime requirement, In: Methods of Soil Analysis. Part 2, Chemical and Microbiological Properties, American Society of Agronomy, Madison, WI, USA, PP. 199–224.
Nelson, R.E., 1986, Carbonate and Gypsum, In: Methods of Soil Analysis, Part III, 3rd Ed, Edited by: Sparks, D.L., American Society of Agronomy, Madison, WI. USA. PP. 961-1010.
Ninomiya, Y. & Fu, B., 2005, Detecting Lithology with Advanced Spaceborne thermal Emission and Reflectance Radiometer (ASTER) Multispectral Thermal Infrared, Journal of Remote Sensing of Environment, 99, PP. 127–139. https://doi.org/10.1016/j.rse. 2005.06.009.
Poormohamadi, S., Ekhtesasi, M.R., Rahimian, M.H., 2016, Identification and Separation of Massive and Debris Lime Stones by Integrated Application of Remote Sensing and Geomorphology Approaches (Case Study: Bahadoran region in Yazd province), Journal of Engineering Geology, 4, PP. 3113–3130. http://dx.doi.org/10.18869/ acadpub.jeg.9.4.3113.
Rahmani, N., Shahedi, K. & Miryaghobzadeh, M.H., 2011, The Evaluation of Vegetation Indices Using for Remote Sensing (Case Study: Herisk Basin), 24thGeomatic Congress, Survey Institute, Tehran, PP. 163–215. https://doi.org/10.1016/S0065-2113(10) 07005-7.
Rangzan, K., Kabolizadeh, S.S., Karimi, D. & Saberi, A., 2019, Applied Spectroscopy of Minarals, Shahid Chamran University of Ahvaz.
Rangzan, K., Kabolizadeh, M., Zareie, S., Saki, A. & Karimi, D., 2022, The Capability of Sentinel-2 Image and FieldSpec3 for Detecting Lithium-Containing Minerals in Central Iran, Frontiers of Earth Science, 16(3), PP. 678–695.
Rangzan, K., Kabolizadeh, M., Mousavi, S.S., Karimi, D. & Rashnoei, A., 2023, Assessing the Potential of Sentinel-2 Imagery and Spectroscopy for Determining the Origin of Ancient Artifacts in Khuzestan, Iran, The Egyptian Journal of Remote Sensing and Space Science, 26(3), PP. 455–476.
Rhoades, J.D., 1996, Salinity: Electrical Conductivity and Total Dissolved Solids, In: Methods of Soil Analysis, Part III, 3rd, Edited by: Sparks D.L. American Society of Agronomy, Madison, WI. USA.
Rosin, N.A., Demattê, J.A.M., Poppiel, R.R., Silvero, N.E.Q., et al., 2023, Mapping Brazilian Soil Mineralogy Using Proximal and Remote Sensing Data, Geoderma, 432, P. 116413. https://doi.org/10.1016/j.geoderma. 2023.116413.
Stenberg, B., Rossel. R.A.V., Mouazen, A.N. & Wetterlind, G., 2010, Visible and Near Infrared Spectroscopy in Soil Science, Advance in Agronomy, 107.
Sumner, M.E. & Miller, W.P., 1996, Cation Exchange Capacity and Exchange Coefficients, In Methods of Soil Analysis, Part III, Edited by: Sparks, D.L. American Society of Agronomy, Madison, WI.
Summers, D., Lewis, M., Ostendorf, B. & Chittleborough, D., 2011, Visible Near Infrared Reflectance Spectroscopy as a Predictive Indicator of Soil Properties, Ecology Indicator, 11, PP. 123–131.
Watanabe, H., 2002, Rock Type Classification by Multi-band TIR of ASTER, Burlington House, Piccadilly, London, UK.
Wetterlind, J., Stenberg, B., Raphael, A. & Rossel, V., 2013, Soil Analysis Using Visible and Near Infrared Spectroscopy, Plant Mineral Nutrients, 953, PP. 95–107. https://doi.org/10.1007/978-1-62703-152-3_6.
Yanbing, Q., Xin, Q., Qianru, Q. & Manoj, K.Sh., 2021, Prediction of Soil Calcium Carbonate With Soil Visible-Near-Infrared Reflection (Vis-NIR) Spectral in Shaanxi Province, China: Soil Groups vs. Spectral Groups, International Journal of Remote Sensing, 42. https://doi.org/10.1080/ 01431161.2020.1854892.
Zaini, N., Meer, F. & Werff, H., 2012, Effect of Grain Size and Mineral Mixing on Carbonate Absorption Features in the
SWIR and TIR Wavelength Regions, Remote Sensing, 4, PP. 987–1003. https://doi.org/10.3390/rs4040987.
Zheng, G., Jiao, C., Zhou, S. & Shang, G., 2016, Analysis of Soil Chronosequance Studies Using Reflectance Spectroscopy, International Journal of Remote Sensing, 37(8), PP. 1881–1901. https://doi.org/10.1080/ 01431161.2016.1163751.