مدل‌سازی و پیش‌بینی تغییرات کاربری اراضی با استفاده از مدل ترکیبی CA-ANN در جنگل‌های مانگرو خمیر و قشم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه محیط زیست، دانشگاه لرستان، دانشکده منابع طبیعی، خرم آباد، ایران

2 استاد گروه محیط زیست، دانشگاه تهران، دانشکده منابع طبیعی، کرج، ایران

چکیده

سابقه و هدف: درحال‌حاضر یکی از مهم‌ترین مسائل محیط‌زیستی جهان تغییرات کاربری اراضی و افزایش ناپایداری در اکوسیستم‌های طبیعی و مناطق تحت حفاظت است. جنگل‌های مانگرو در مناطق ساحلی گرمسیری رشد می‌کنند و یکی از آسیب‌پذیرترین و درمعرض‌خطرترین اکوسیستم‌های جهان شمرده می‌شوند. تغییرات کاربری اراضی به‌طورکلی در یکپارچگی این اکوسیستم‌های طبیعی تأثیر می‌گذارد و همچنین به تغییرات زیستگاه منجر می‌شود و تهدیدی برای زندگی گیاهان و حیوانات به ‌شمار می‌رود. پیامدهای مستقیم این تغییرات و تأثیرات ناشی از آن شامل کاهش سلامت و مساحت جنگل‌های مانگرو، تشدید گرمایش جهانی و تغییرات اقلیمی، کاهش کیفیت آب ساحلی، کاهش تنوع زیستی، تکه‌تکه‌شدن زیستگاه‌های ساحلی و همچنین تخریب منابع زیستی خواهد بود. بنابراین پایش مکانی‌ زمانی تغییرات کاربری اراضی و مدل‌سازی و پیش‌بینی ‏روند این تغییرات می‌تواند به مدیریت یکپارچه و برنامه‌ریزی صحیح درمورد جنگل‌های ‏مانگرو کمک کند. بر این ‌اساس، در مطالعۀ حاضر، تغییرات مکانی‌ زمانی کاربری‌های اراضی جنگل‌های مانگرو خمیر و قشم طی سال‌های 1989-2023 بررسی شد. علاوه‌براین به‌منظور مدل‌سازی و پیش‌بینی روند این تغییرات، مدل‌‌ ترکیبی CA-ANN براساس متغیرهای توصیفی ارتفاع، شیب، تراکم جمعیت، فاصله از ‏سکونتگاه‌ها مرکز شهر و جاده‌ها، برای سال 2060 مورد بررسی قرار گرفت.
مواد و روش‌ها: جنگل‌های مانگرو خمیر و قشم (منطقۀ حفاظت‌شدۀ حرا)، با مساحت ‏86,258 هکتار، در استان هرمزگان واقع شده است. در این مطالعه، تغییرات مکانی‌ زمانی کاربری‌های اراضی این منطقه، با استفاده از مجموعه تصاویر ماهواره‌ای لندست (1989-2023) در سامانۀ تحت وب گوگل ارث انجین (GEE) بررسی شد. علاوه‌براین، به‌منظور مدل‌سازی و پیش‌بینی این تغییرات، مدل‌‌ ترکیبی شبکۀ عصبی مصنوعی و اتومای سلولی (CA-ANN)، براساس متغیرهای توصیفی ارتفاع، شیب، تراکم جمعیت، فاصله از ‏سکونتگاه‌ها و مرکز شهر و جاده‌ها، بررسی شد و نقشۀ روند احتمالی تغییرات کاربری اراضی، برای سال 2060 نیز تهیه شد. در نهایت، با استفاده از مدل رگرسیونی حداقل مربعات معمولی (OLS)، میزان تأثیرگذاری این متغیرها در روند تغییرات کاربری‌های اراضی منطقه تحلیل شد.
نتایج و بحث: مطابق نتایج، جنگل‌های مانگرو خمیر و قشم در سال 2023، در مقایسه با سال 1989، روندی ‏کاهشی را نشان می‌دهند. ‏‏نتایج پیش‌بینی تغییرات کاربری اراضی نیز نشان داد، در سال 2060، ‏پهنه‌های جزرومدی و ‏اراضی لخت افزایش و در مقابل، جنگل‌های مانگرو و پهنه‌های آبی کاهش خواهند یافت. همچنین بیشترین تغییرات به کاهش جنگل‌های مانگرو (در ‏مناطق شمالی و جنوب‌شرق منطقه) و افزایش سایر مناطق غیرطبیعی (پهنه‌های جزرومدی و اراضی لخت در محدودۀ ‏بندر خمیر، در شمال و شمال‌شرق منطقه و همچنین حاشیۀ روستاهای لافت تا گوران) بازمی‌گردد و با توجه به مقادیر احتمال انتقال، پوشش‌های جنگلی مانگرو مستعد تبدیل‌شدن به سایر مناطق غیرطبیعی‌ هستند‏. برمبنای نتایج تحلیل مدل رگرسیونی نیز، عمده‌ترین متغیرهای توصیفی تأثیرگذار در تغییرات کاربری اراضی شامل فاصله از سکونتگاه‌ها و جاده‌ها است، زیرا در این ‏رویشگاه‌های طبیعی، دسترسی و امکان توسعۀ فعالیت‌های انسانی بیشتر است. در این زمینه، تداوم افزایش تغییرات کاربری‌های اراضی، در جنگل‌های مانگرو خمیر و قشم، به نابودی و انقراض گسترۀ وسیعی از این ذخایر ارزشمند زیستی در جنوب کشور منجر می‌شود.
نتیجه‌گیری: با توجه به اینکه جنگل‌های مانگرو در خمیر و قشم جزء مناطق حفاظت‌شدۀ محیط‌زیست و مرزهای مدیریتی محسوب می‌شوند، اجرای پروژه‌های پیشنهادی و احداث هرگونه زیرساخت و توسعه در این منطقه باید با توجه به طرح‌های مدیریتی (زون‌بندی) و ارزیابی‌های زیست‌محیطی انجام شود. از سویی، تغییرات کاربری‌ها باید در خارج از مرز مدیریتی منطقه محدود شود تا کاهش یکپارچگی و ازهم‌گسیختگی زیستگاه، در این رویشگاه‌های طبیعی، به حداقل برسد. بر این ‌اساس، کاهش تأثیرات نامطلوب ناشی از تغییرات ‏کاربری اراضی، در این منطقه، نیازمند برنامه‌ریزی مناسب و مدیریتی یکپارچه در بهره‌وری صحیح از این منابع طبیعی است. یافته‌های این مطالعه می‌تواند به ذی‌نفعان نیز، در ایجاد فرصتی برای توسعۀ راهبردهای مناسب به‌منظور حفاظت از جنگل‌های مانگرو خمیر و قشم و احیای این رویشگاه‌ها، یاری رساند.

کلیدواژه‌ها


عنوان مقاله [English]

Land Use Changes Modeling and Predictions Using CA-ANN Hybrid Model in Khamir and Qeshm Mangrove Forests

نویسندگان [English]

  • Parvaneh Sobhani 1
  • Afshin Danehkar 2
1 Assistant Professor, Department of Environmental Science, Natural Resources Faculty, Lorestan University, Khorramabad, Iran
2 Professor, Department of Environmental Science, Natural Resources Faculty, University of Tehran, Karaj, Iran
چکیده [English]

Introduction: Currently, one of the most important environmental issues in the world is land use change and increasing unsustainability in natural ecosystems and protected areas. Mangrove forests grow in tropical coastal areas and are one of the most vulnerable and endangered ecosystems in the world. Land use changes generally affect the integrity of these natural ecosystems and also lead to habitat conversion and pose a threat to plant and animal life. The direct consequences of these changes and their effects include a decrease in the health and area of ​​mangrove forests, intensification of global warming and climate change, a decrease in coastal water quality, a decrease in biodiversity, fragmentation of coastal habitats, and the destruction of biological resources. Therefore, spatio-temporal monitoring of land use changes and modeling and predicting the trend of these changes can contribute to integrated management and proper planning in mangrove forests. Accordingly, in the present study, the spatial-temporal changes in land use of Khamir and Qeshm mangrove forests during the years 1989-2023 were investigated. In addition, to model and predict the trend of these changes, a combined CA-ANN model was investigated based on the descriptive variables of altitude, slope, population density, distance from settlements, distance from city center, and distance from roads for the year 2060.
Materials and Methods: Khamir and Qeshm mangrove forests (Hara Protected Area) with an area of ​​86,258 ha located in Hormozgan province. In this study, the spatial-temporal changes in land use in this region were investigated using a set of Landsat satellite images (1989-2023) in the Google Earth Engine (GEE) web-based system. In addition, to model and predict these changes, a combined artificial neural network and cellular automata (CA-ANN) model was examined based on descriptive variables of altitude, slope, population density, distance from settlements, distance from city center, and distance from roads, and a map of the possible trend of land use changes for the year 2060 was also prepared. Finally, the ordinary least squares (OLS) regression model was used to analyze the impact of these variables on the trend of land use changes in the region.
Results and Discussion: According to the results, the mangrove forests of Khamir and Qeshm show a decreasing trend in 2023 compared to 1989. The results of the prediction of land use changes also showed that tidal zones and bare lands will increase in 2060, while mangrove forests and aquatic areas will decrease. Also, the most significant changes are related to the reduction of mangrove forests (in the northern and southeastern regions of the region) and the increase of other unnatural areas (tidal zones and bare lands in the area of ​​Bandar Khamir in the north and northeast of the region, as well as on the outskirts of the villages of Laft to Goran). Accordingly, considering the values ​​of the probability of transition, mangrove forest covers are susceptible to transformation into other unnatural areas. In addition, the results of the regression model analysis showed that the most important descriptive variables affecting land use changes include distance from settlements and roads due to greater accessibility and the possibility of high development of human activities in these natural habitats. In this regard, the continued increase in land use changes in the Khamir and Qeshm mangrove forests will lead to the destruction and extinction of a large area of ​​these valuable biological reserves in the south of the country.
Conclusion: Given that the Khamir and Qeshm mangrove forests are considered areas under environmental protection and management boundaries, the implementation of proposed projects and the construction of any infrastructure and development in this area must be carried out by management plans (zoning) and environmental assessments. On the other hand, land use changes outside the management boundaries of the area must be limited to minimize the reduction in the integrity and fragmentation of the habitat in these natural habitats. Accordingly, reducing the adverse effects of land use changes in this area requires appropriate planning and integrated management in the proper utilization of these natural resources. The findings of this study can also help stakeholders create an opportunity to develop appropriate strategies to protect the mangrove forests of Khamir and Qeshm and restore these habitats.

کلیدواژه‌ها [English]

  • Land use
  • CA-ANN hybrid model
  • OLS regression model
  • Khamir and Qeshm mangrove forests
Adame, M.F., Connolly, R.M., Turschwell, M.P., Lovelock, C.E., Fatoyinbo, T., Lagomasino, D., Goldberg, L.A., Holdorf, J., Friess, D.A. & Sasmito, S.D., 2021, Future Carbon Emissions from Global Mangrove Forest, Loss. Glob. Chang. Biol., 27, PP. 2856–2866. (https://doi.org/10.1111/gcb.15571).
Aghaei, M., Khavarian, H. & Mostafazadeh, R., 2020, Prediction of Land Use Changes Using the CA-Markov and LCM Models in the Kozehtopraghi Watershed in the Province of Ardabil, Watershed Management Research Journal, 33(3), PP. 91–107. (https:// doi.org/10.22092/wmej.2019.128009.1267).
Ahmad, H., Abdallah, M., Jose, F., Elzain, H.E., Bhuyan, M.S., Shoemaker, D.J. & Selvam, S., 2023, Evaluation and Mapping of Predicted Future Land Use Changes Using Hybrid Models in a Coastal Area, Ecological Informatics, 78, P. 102324. (https://doi.org/10.1016/j.ecoinf.2023.102324).
Amoah, M.K.M., 2022, Mapping Wetlands Using GIS and Remote Sensing Techniques, A Case Study of Wetlands in Greater Accra, Ghana, [Master's thesis, Bowling Green State University]. OhioLINK Electronic Theses and Dissertations Center. (https://geogis.bgsu.edu/ theses/ETD_Amoah_08-28-2022).
Ao, Y., Li, H., Zhu, L., Ali, S. & Yang, Z., 2019, The Linear Random Forest Algorithm and Its Advantages in Machine Learning Assisted Logging Regression Modeling, Journal of Petroleum Science and Engineering, 174, PP. 776–789. (https://doi.org/10.1016/j.petrol.2018.11.067).
Arowolo, A.O., Deng, X., Olatunji, O.A. & Obayelu, A.E., 2018, Assessing Changes in the Value of Ecosystem Services in Response to Land-Use/Land-Cover Dynamics in Nigeria, Science of the Total Environment, 636, PP. 597–609. (https://doi.org/10.1016/ j.scitotenv.2018.04.277).
Atasoy, M., 2020, Assessing the Impacts of Land-Use/Land-Cover Change on the Development of Urban Heat Island Effects, Environment, Development and Sustainability, 22(8), PP. 7547–7557. (https://doi.org/ 10.1007/s10668-019-00535-w).
Erfanifard, Y., Lotfi Nasirabad, M. & Stereńczak, K., 2022, Assessment of Iran’s Mangrove Forest Dynamics (1990–2020) Using Landsat Time Series, Remote Sensing, 14(19), P. 4912. (https://doi.org/ 10.3390/rs14194912).
Etemadi, H., Smoak, J.M. & Abbasi, E., 2021, Spatiotemporal Pattern of Degradation in Arid Mangrove Forests of the Northern Persian Gulf, Oceanologia, 63(1), PP. 99–114. (https://doi.org/10.1016/j.oceano.2020.10.003).
Fischer, J., Wirtz, S. & Scherer, V., 2023, Random Forest Classifier and Neural Network for Fraction Identification of Refuse-Derived Fuel Images, Fuel, 341, P. 127712. (https://doi.org/10.1016/j.fuel.2023.127712).
Gholami, D.M. & Jaafari, A., 2020, Changes in Landward and Seaward Extent of Mangroves in the Coastal Areas of the Hormozgan Province, Iranian Journal of Forest and Range Protection Research, 18(1), PP. 1–13.
     (https://doi.org/10.1016/j.ecss.2020.106644).
 
Girma, R., Fürst, Ch & Moges, A., 2022, Land Use Land Cover Change Modeling by Integrating Artificial-Neural-Network with Cellular Automata-Markov Chain Model in Gidabo River Basin, Main Ethiopian Rift, Environmental Challenges, 6, P. 100419. (https://doi.org/10.1016/j.envc.2021.100419).
Gouvêa, L.P., Serrão, E.A., Cavanaugh, K., Gurgel, C.F., Horta, P.A. & Assis, J., 2022, Global Impacts of Projected Climate Changes on the Extent and Aboveground Biomass of Mangrove Forests, Divers. Distrib., 28, PP. 2349–2360.
     (https://doi.org/10.1111/ddi.13631).
Hakim, L., Siswanto, D. & Makagoshi, N., 2017, Mangrove Conservation in East Java: The Ecotourism Development Perspectives, Journal of Tropical Life Science, 7 (3), PP. 277–285. (https://doi.org/10.11594/jtls.07.03.14).
Hall, C.M., 2001, Trends in Ocean and Coastal Tourism: The End of the Last Frontier?, Ocean & Coastal Management, 44(9-10), PP. 601–618. (https://doi.org/10.1016/S0964-5691(01)00071-0).
Hamilton, S.E. & Casey, D., 2016, Creation of a High Spatio‐Temporal Resolution Global Database of Continuous Mangrove Forest Cover for the 21st Century (CGMFC‐21), Global Ecology and Biogeography, 25(6), PP. 729–738. (https://doi.org/10.1111/geb.12449).
Idajati, H., Pamungkas, A. & Kukinul Siswanto, V., 2016, The Level of Participation in Mangrove Ecotourism Development, Wonorejo Surabaya, Procedia - Social and Behavioral Sciences, 227, PP. 515–520. (https://doi.org/10.1016/j.sbspro.2016.06.109).
Islam, K., Rahman, M.F. & Jashimuddin, M., 2018, Modeling Land Use Change Using Cellular Automata and Artificial Neural Network: The Case of Chunati Wildlife Sanctuary, Bangladesh, Ecological Indicators, 88, PP. 439–453. (https://doi.org/10.1016/ j.ecolind.2018.01.047).
Jafarnia, S., Hojjati, S.M. & Kooch, Y., 2012, The Effect of Soil and Water Characteristics on the Vegetative Parameters of Hara Trees in the Qeshm Mangrove Habitat, Hormozgan Province, Environmental Sciences, 9 (4), PP. 133–148.
    (https://envs.sbu.ac.ir/article_96416.html?lang=en).
Jahdi, R., 2023, Land Use Changes Modeling and Future Predictions Using CA-ANN Simulation in the Watershed of 25 (Shenroud, Siahkal), Journal of Geography and Environmental Studies, 12 (46), PP. 164–179. (https://doi.org/20.1001.1.20087845.1402. 12.46.10.4).
John, J., Nandhini, A., Velayudhaperumal Chellam, P. & Sillanpää, M., 2022, Microplastics in Mangroves and Coral Reef Ecosystems: A Review, Environ. Chem. Lett., 20, PP. 397–416. (https://doi.org/ 10.1007/s10311-021-01326-4).
Kamran, Khan, A.K., Khayyam, U., Waheed, A. & Khokhar, M.F., 2023, Exploring the Nexus between Land Use Land Cover (LULC) Changes and Population Growth in a Planned City of Islamabad and Unplanned City of Rawalpindi, Pakistan, Heliyon, 9 (2), P. e13297. (https://doi.org/ 10.1016/j.heliyon.2023.e13297).
Karimzadeh Motlagh, Z., Lotfi, A., Pourmanafi, S. & Ahmadizadeh, S., 2022, Evaluation and Prediction of Land-Use Changes Using the CA_Markov Model, Geography and Environmental Planning, 33(2), PP. 63–80. (https://doi.org/10.22108/gep.2022.130601.1458).
Khan, A.R., Khan, A., Masud, S. & Rahman, R.M., 2021, Analyzing the Land Cover Change and Degradation in Sundarbans Mangrove Forest Using Machine Learning and Remote Sensing Technique, In Advances in Computational Intelligence: 16th International Work-Conference on Artificial Neural Networks, IWANN 2021, Virtual Event, June 16–18, 2021, Proceedings, Part II 16 (PP. 429–438), Springer International Publishing. (https://doi.org/10.1007/978-3-030-85099-9_35).
Lacaux, J.P., Tourre, Y.M., Vignolles, C., Ndione, J.A. & Lafaye, M., 2007, Classification of Ponds from High-Spatial Resolution Remote Sensing: Application to Rift Valley Fever epidemics in Senegal, Remote Sens. Environ, 106, PP. 66–74. (https://doi.org/10.1016/j.rse.2006.07.012).
Lambin, E.F., Geist, H.J. & Lepers, E., 2003, Dynamics of Land-Use and Land-Cover Change in Tropical Regions, Annual Review of Environment and Resources, 28, PP. 205–241. (https://doi.org/10.1146/ annurev.energy.28.050302.105459).
Liu, J., Dietz, T., Stephen, R., Carpenter, S.R. & Taylor, W.W., 2007, Complexity of Coupled Human and Natural Systems, Science, 317(5844). (https://doi.org/10.1126/ science.1144004).
Lotfikhah, S., Frouzd, M. & Danehkar, A., 2018, Coastal Management Plan (SMP) of Hormozgan Province. Review Plan for Integrated Management Studies of Coastal Areas of Hormozgan Province, Iran's Structural Consulting Engineers. (General Directorate of Coastal and Port Engineering, Vice-Chancellor of Engineering and Development of Infrastructure Affairs, Ports and Maritime Organization of the Islamic Republic of Iran).
Mafi-Gholami, D., Zenner, E.K., Jaafari, A. & Bui, D.T., 2020, Spatially Explicit Predictions of Changes in the Extent of Mangroves of Iran at the End of the 21st Century, Estuarine, Coastal and Shelf Science, 237, P. 106644. (https://doi.org/ 10.1016/j.ecss.2020.106644).
McDonald, A.D., Ferris, T.K. & Wiener, T.A., 2020, Classification of Driver Distraction: A Comprehensive Analysis of Feature Generation, Machine Learning, and Input Measures, Human Factors, 62(6), PP. 1019–1035. (https://doi.org/10.1177/0018720819856454).
Mirzaei, A., 2021, Proportion Measurement of Territorial Waters of Hormozgan Province for Marine Tourism Activities Zoning, Master's Thesis in the Field of Natural Resources-Environmental Engineering, Agriculture and Natural Resources Campus, Faculty of Natural Resources, Tehran.
Morshed, S.R., Fattah, Md.A., Haque, Md.N. & Morshed, S.Y., 2021, Future Ecosystem Service Value Modeling with Land Cover Dynamics by Using Machine Learning Based Artificial Neural Network Model for Jashore City, Bangladesh, Physics and Chemistry of the Earth, 126, P. 103021. (https://doi.org/10.1016/j.pce.2021.103021).
Munthali, M., Mustak, Sk., Abiodun, A. & Davis, N., 2020, Modelling Land Use and Land Cover Dynamics of Dedza District of Malawi Using Hybrid Cellular Automata and Markov Model, Remote Sensing Applications Society and Environment, 17(4), P. 100276. (https://doi.org/10.1016/ j.rsase.2019.100276).
Petrosian, H., Danekar, A., Ashrafi, S. & Feghhi, J., 2017, Analysis of Rhizophora Mucronata Habitat Condition by Comparing Environmental Variables in Mangrove Forest of Sirik, Minab and Jask Habitats in Coastline of Oman Sea, Forest and Wood Products, 70(1), PP. 39–48. (https://jfwp.ut.ac.ir/article_61609.html?lang=en).
Quang, N.H., Quinn, C.H., Carrie, R., Stringer, L.C., Hue, L.T.V., Hackney, Ch.R. & Tan, D.V., 2021. Comparisons of Regression and Machine Learning Methods for Estimating Mangrove Above-Ground Biomass Using Multiple Remote Sensing Data in the Red River Estuaries of Vietnam, Remote Sensing Applications: Society and Environment, 26, P. 100725. (https://eprints.whiterose.ac.uk/185739/).
Rayegani, B., 2019. Investigating the threats of mangrove forests with the help of remotely sensed data, Journal of Spatial Analysis Environmental Hazards, 6 (2), PP. 53-68. (https://doi.org/10.29252/jsaeh.6.2.53).
Sagar, S., Roberts, D., Bala, B. & Lymburner, L., 2017, Extracting the Intertidal Extent and Topography of the Australian Coastline from a 28 Year Time Series of Landsat Observations, Remote Sensing of Environment, 195, PP. 153–169.
     (https://doi.org/10.1016/j.rse.2017.04.009).
Sejati, A.W., Buchori, I. & Rudiarto, I., 2019, The Spatio-Temporal Trends of Urban Growth and Surface Urban Heat Islands over Two Decades in the Semarang Metropolitan Region, Sustainable Cities and Society, 46(101432).
     (https://doi.org/10.1016/j.scs.2019.101432).
Shafizadeh-Moghadam, H., 2019, Improving Spatial Accuracy of Urban Growth Simulation Models Using Ensemble Forecasting Approaches, Computers, Environment and Urban Systems, 76, PP. 91–100. (https://doi.org/10.1016/j.compenvurbsys. 2019.04.005).
Shimu, S.A., Aktar, M., Afjal, M.I., Nitu, A.M., Uddin, M.P. & Al Mamun, M., 2019, NDVI Based Change Detection in Sundarban Mangrove Forest Using Remote Sensing Data, In 2019 4th International Conference on Electrical Information and Communication Technology (EICT) (PP. 1-5). IEEE.
Sobhani, P. & Danehkar, A., 2023a, Natural Features and Management Areas of Khamir and Qeshm Mangrove Forests, Iran Nature, 8(4), PP. 97–112. (https://doi.org/10.22092/irn.2023.362533).
Sobhani, P. & Danehkar, A., 2023b, Spatial-Temporal Changes in Mangrove Forests for Analyzing Habitat Integrity: A Case of Hara Biosphere Reserve, Iran, Environmental and Sustainability Indicators, 100293. (https://doi.org/10.1016/j.indic.2023.100293).
Sobhani, P., Esmaeilzadeh, H. & Mostafavi, H., 2021, Simulation and Impact Assessment of Future Land Use and Land Cover Changes in Two Protected Areas in Tehran, Iran, Sustainable Cities and Society, 75, P. 103296. (https://doi.org/10.1016/j.scs.2021.103296).
Subedi, P., Subedi, K. & Thapa, B., 2013, Application of a Hybrid Cellular Automaton – Markov (CA-Markov) Model in Land-Use Change Prediction: A Case Study of Saddle Creek Drainage Basin, Florida, Applied Ecology and Environmental Sciences, 1(6), PP. 126–132.
     (https://doi.org/10.12691/aees-1-6-5).
Sudhana, S.A., Sakti, A.D., Syahid, L.N., Prasetyo, L.B., Irawan, B., Kamal, M. & Wikantika, K., 2020, Detecting Mangrove Deforestation Using Multi Land Use Land Cover Change Datasets: A Comparative Analysis in Southeast Asia, In IOP Conference Series: Earth and Environmental Science, 500(1), P. 012014. IOP Publishing. (https://doi.org/10.1088/1755-1315/500/1/012014).
Statistical Center of Iran, 2016. Results of the General Population and Housing Census, Office of the Director, Public Relations and International Cooperation, PP. 1-150. (https://amar.org.ir/).
Verburg, P.H., Overmars, K.P., Huigen, M.G.A., de Groot, W.T. & Veldkamp, A., 2006, Analysis of the Effects of Land Use Change on Pas, Applied Geography, 26(2), PP. 153–173. (http://dx.doi.org/10.1016/j.apgeog.2005.11.005).
Walters, B.B., Rönnbäck, P., Kovacs, J.M., Crona, B., Hussain, S.A., Badola, R. & Dahdouh-Guebas, F., 2009, Erratum to "Ethnobiology, Socio-Economics and Management of Mangrove Forests: A Review", Aquatic Botany, 90(3), PP. 273–273. (https://doi.org/10.1016/j.aquabot.2008.02.009).
Wang, W., Fu, H., Lee, S.Y., Fan, H. & Wang, M., 2020, Can Strict Protection Stop the Decline of Mangrove Ecosystems in China? From Rapid Destruction to Rampant Degradation, Forests, 11(1), P. 55. (https://doi.org/10.3390/f11010055).
Wibowo, A. & Supriatna, S., 2011, Coastal Environmental Vulnerability on Coastal Cities in Indonesia, Jurnal Ilmu dan Teknologi Kelautan Tropis, 3(2). (https://doi.org/10.28930/jitkt.v3i2.7818).
Xia, Q., Qin, C.Z., Li, H., Huang, C., Su, F.Z. & Jia, M.M., 2020, Evaluation of Submerged Mangrove Recognition Index Using Multi-Tidal Remote Sensing Data, Ecol. Indic., 113, P. 106196. (https://doi.org/10.1016/ j.ecolind.2020.106196).
Yaghoubzadeh, M., Salmanmahiny, A., Moslehi, M., Danehkar, A. & Tabrizi, A.R.M., 2021, Investigation of Port Effects on Vegetative and Reproductive Characteristics of Grey Mangrove (Avicennia Marina (Forssk.) Vierh.) of Iran, Iranian Journal of Forest and Poplar Research, 28(3), PP. 244–256. (https://doi.org/10.22092/IJFPR.2020.342904.1930).
Zhang, L., Huettmann, F., Liu, S., Sun, P., Yu, Z., Zhang, X. & Mi, C., 2019, Classification and Regression with Random Forests as a Standard Method for Presence-Only Data SDMs: A Future Conservation Example Using China Tree Species, Ecological Informatics, 52, PP. 46–56.
     (https://doi.org/10.1016/j.ecoinf.2019.05.003).
Zhang, J., Li, X., Zhang, C., Yu, L., Wang, J., Wu, X. & Shi, T., 2022, Assessing Spatiotemporal Variations and Predicting Changes in Ecosystem Service Values in the Guangdong–Hong Kong–Macao Greater Bay Area, GIScience & Remote Sensing, 59(1), PP.184–199. (https://doi.org/ 10.1080/15481603.2021.2022427).