نوع مقاله : علمی - پژوهشی
نویسنده
دانشگاه خواجه نصیرالدین طوسی
چکیده
کلیدواژهها
عنوان مقاله [English]
Morphology analysis which concentrates on spatial relations analysis between neighborhood pixels provides a better image processing compared to analyses which are only based on spectral signature of a single pixel. The proposed method in this paper integrates spectral and spatial information produced from morphology analysis to improve the final result of hyper spectral image classification. For this reason at first, primary components are extracted using limited training samples. Extended morphological profiles are then produced by applying morphological analysis on each extracted features. Afterwards, Final components are extracted by applying a supervised feature selections on a datasets composed of both the spectral and the extended morphological features. The extracted features are introduced into the Support Vector Machine (SVM) algorithm. The final results are then archived by implementing a majority filter as a post-processing step. The proposed method is implemented on aerial hyper spectral images of Rosis sensor taken from urban and semi-urban areas from. The obtained results proved the efficiency of the proposed method where classification accuracies are improved from 98.86 and 82.70 in conventional method to 99.36 and 95.75 in urban and semi-urban areas respectively. Keywords: Morphological Analysis, Support Vector Machines (SVMS), Feature Extraction (FE), Classification, Majority Vote