مقایسة دسته داده‌های کالیبره‌شده به روش IARR و داده‌های تصحیح‌شده به روش تداخل سیگنال ‌استر در بارزسازی زون‌های دگرسانی. مطالعة موردی: مناطق معدنی سرچشمه و دره‌زار کرمان، جنوب‌شرق ایران

نوع مقاله : علمی - پژوهشی

نویسندگان

1 کارشناس ارشد زمین‌شناسی اقتصادی دانشگاه شیراز

2 استاد بخش علوم زمین دانشگاه شیراز

چکیده

مناطق معدنی سرچشمه و دره‌زار در منطقه ایران مرکزی و کمربند ولکانو- پلوتونیکی ارومیه- دختر قرار گرفته است. سنگ‌های آتشفشانی ائوسن که تحت تأثیر نفوذی‌های الیگومیوسن قرار گرفته‌اند این منطقه را پوشش می‌دهد. کانه‌زایی مس —بیشتر از نوع پورفیری و همراه با دگرسانی‌های وسیع— همراه با اقلیم نیمه‌خشک، به‌دلیل پوشش گیاهی کم، میزان ناچیز هواویز و بخار آب جوّی و نیز رخ‌نمون واضح سنگ‌ها این منطقه را برای آزمایش نتایج سنجش از دور ماهواره‌ای مناسب کرده است. کالیبراسیون IARR برای نرمال‌کردن تصاویر به‌کمک یک طیف میانگین صحنه به‌کار می‌رود. تداخل سیگنال اثری در تصویربرداری استر است که با نشت سیگنال از باند 4 به درون باندهای 5 و 9 ایجاد می‌شود. در این مقاله، از باندهای طیفی مرئی- فروسرخ نزدیک و فروسرخ موج کوتاه محصولات استر، شامل سطح 1 L1B و سطح 2 AST_07XT استفاده شد. دسته دادة L1B با استفاده از کالیبراسیون بازتاب نسبی میانگین درونی به دادة بازتابش سطح زمین تبدیل شد؛ درصورتی‌که دستة داده‌های AST_07XT خود با چنین ماهیتی و با استفاده از تصحیح تداخل سیگنال در اختیار کاربر قرار می‌گیرند. به‌منظور ارزیابی و شناسایی بهترین روش کالیبراسیون، الگوریتم انطباق سیمای طیفی (SFF) روی این دستة داده‌ها اجرا و تصویرهای خروجی براساس نقشة زمین‌شناسی منطقه و مشاهدات میدانی با یکدیگر مقایسه شدند. از روش Z Profile برای استخراج طیف‌های خالص تصویر هر دو دستة داده استفاده شد. طیف نمونه‌های صحرایی با دستگاه طیف‌سنج (ASD) اندازه‌گیری شد، سپس طیف‌های مستخرج از نمونه‌ها به نُه باند استر بازنویسی شدند. کتابخانة طیفی JPL1 به‌صورت مرجعی برای تحلیل طیف‌های خالص تصویر و طیف‌های حاصل از نمونه‌های صحرایی مرتبط با کانی‌های شاخص دگرسانی منطقه استفاده شد. بدین‌ترتیب، کائولینیت را کانی شاخص دگرسانی فیلیک- آرژیلیک، آلونیت را کانی شاخص دگرسانی آرژیلیک پیشرفته و کانی اپیدوت را برای بارز‌سازی دگرسانی پروپیلیتیک به‌کار رفتند. نتایج حاصل از این پردازش نشان داد که دستة دادة L1B کالیبره‌شده به روش IARR به‌دلیل ازبین‌بردن محدودیت‌هایی، شامل آثار بخار آب جوی و سیماهای جذبی و بازتابی اضافی، به‌نسبت دستة دادة استاندارد AST_07XT تصحیح‌شده با تداخل سیگنال نتایج بهتری را برای بارزسازی دگرسانی‌های فیلیک- آرژیلیک، آرژیلیک پیشرفته  و پروپیلیتیک منطقه به‌دست می‌دهد.

کلیدواژه‌ها


  1. Abrams, M., 2000, The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data Products for the High Spatial Resolution Imager on NASA’s Terra Platform, International Journal of Remote Sensing, 21, PP. 847-859.
  2. Aftabi, A. & Atapour, H., 1997, Geochemical and Petrological Characteristics of Shoshonitic and Potassic Calcalkaline Magmatism at Sarcheshmeh and Dehsiahan Porphyry Copper Deposits, Kerman, Iran, Research Bulletin of Isfahan University, 9, PP. 127-156.
  3. Atapour, H. & Aftabi, A., 2007, The Geochemistry of Gossan Associated with Sarcheshmeh Porphyry Copper Deposit, Rafsanjan, Kerman, Iran: Implications for Exploration and the Environment, Journal of Geochemical Exploration, 93, PP. 47-65.
  4. Beiranvand pour, B.A. & Hashim, M., 2011, Identification of Hydrothermal Alteration Minerals for Exploring of Porphyry Copper Deposit Using ASTER Data, SE Iran, Journal of Asian Earth Sciences, 42, PP. 1309-1323.
  5. Biggar, S.F., Thome, K.J., McCorkel, J.T. & D'Amico, J.M., 2005, Vicarious Calibration of the ASTER SWIR Sensor Including Crosstalk Correction, Proceedings International Society Optical Engineering.
  6. Boomeri, M., Kazuo, N., David Richard, L., 2010, The Sarcheshmeh Porphyry Copper Deposit, Kerman, Iran: A Mineralogical Analysis of the Igneous Rocks and Alteration Zones Including Halogen Element Systematic Related to Cu Mineralization Processes, Ore Geology Reviews, PP. 367-381.
  7. Clark, R.N. & Roush, T.L., 1984, Reflectance Spectroscopy: Quantitative Analysis Techniques for Remote Sensing Applications, Journal of Geophysical Research, 89, PP. 6329-6340.
  8. Clark, R.N., King, T.V.V., Kleijwa, M., Swayze, G.A. & Vergon, N., 1990, High Spectral Resolution Reflectance Spectroscopy of Minerals, Journal of Geophysical Research, 95, PP. 12653-12680.
  9. Clark, R.N., Swayze, G.A., Gallagher, A., Gorelick, N. & Kruse, F.A., 1991, Mapping with Imaging Spectrometer Data Using the Complete Band Shape Least-squares Algorithm Simultaneously Fit to Multiple Spectral Features from Multiple Materials, Proceeding, 3rdAirborne Visible/Infrared Imaging Spectrometrer (AVIRIS) Workshop, PP. 2-3.
  10. Clark, R.N., Swayze, G.A. & Gallagher, A., 1992, Mapping the Mineralogy and Lithology of Canyonlands, Utah with Imaging Spectrometer Data and the Multiple Spectral Feature Mapping Algorithm, Summaries of the Third Annual JPL Airborne Geoscience Workshop, PP. 11-13.
  11. Crowley, J.K., 1986, Visible and Near-Infrared Spectra of Carbonate Rocks: Reflective Variations Related to Petrographic Texture and Impurities, Journal of Geophysical Research, 91, PP. 5001-5012.
  12. Derakhshani, R. & Abdolzadeh, M., 2009, Geochemistry, Mineralogy and Alteration Zones of Darrehzar Porphyry Copper Deposit, Kerman, Iran, Journal of Applied Sciences 9, PP. 1628-1646.
  13. Dimitrijevic, M.D., Dimitrijevic, M.N. & Vulovic, D., 1971, Geological map of Iran, 1:100000 series, sheet 7149-Pariz.
  14. Fujisada, H., Sakuma, Ono, A. & Kudoh, M., 1998, Design and Preflight Performance of ASTER Instrument Protoflight Model, IEEE Trans. Geosci. Remote Sens, PP. 1152-1160.
  15. Fujisada, H., Iwasaki, A. & Hara, S., 2001, ASTER Stereo System Performance, Proceeding of SPIE, The International Society for Optical Engineering, 4540, PP. 39-49.
  16. Gabr, S., Ghulam, A. & Kusky, T., 2010, Detecting Areas of High-Potential Gold Mineralization Using ASTER Data, Ore Geo. Rev., 38, PP. 59-69.
  17. Hooseinjani Zadeh, M. & Tangestani, M.H., 2011, Mapping Alteration Minerals Using Sub-Pixel Unmixing of ASTER Data in the Sarduiyeh Area, SE Kerman, Iran, International Journal of Digital Earth, Vol. 4, No. 6, PP. 487-504.
  18. Hooseinjani Zadeh, M. & Tangestani, M.H., 2014, Mineral Exploration and Alteration Zone Mapping Using Mixture Tuned Matched Filtering Approach on ASTER Data at the Central Part of Dehaj-Sarduiyeh Copper Belt, SE Iran, Ieee Journal of Selected Topics In Applied Earth Observations and Remote Sensing, Vol. 7.
  19. Hunt, G.R. & Ashley, P., 1979, Spectra of Altered Rocks in the Visible and Near Infrared, Economic Geology, 74, PP. 1613-1629.
  20. Iwasaki, A. & Tonooka, H., 2005, Validation of a Crosstalk Correction Algorithm for ASTER/SWIR, Geoscience and Remote Sensing, IEEE Transactions, 43, PP. 2747-2751.
  21. Kruse, F.A., 1988, Use of Airborn Imaging Spectrometer Data to Map Minerals Associated with Hydrothermally Altered Rocks in the Northern Grapevine Mountains, Nevada, and California, Remote Sensing of Environment, Vol. 24, PP. 31-51.
  22. Kurucz, R.L., Furenlid, I., Brault, J. & Testerman, L., 1984, NOAO Atlas No,1. The Solar Flux Atlas from 296 to 1300 nm (Sunspot, NM: National Solar Observatory), First citation in article NASAADS.
  23. Mars, J.C. & Rowan, L.C., 2006, Regional Mapping of Phyllic- and Argillic-Altered Rocks in the Zagros Magmatic Arc, Iran, Using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Data and Logical Operator Algorithms, Geosphere 2, PP. 161-186.
  24. Mars, J.C. & Rowan, L.C., 2010, Spectral Assessment of New ASTER SWIR Surface Reflectance Data Products for Spectroscopic Mapping of Rocks and Minerals, Remote Sensing of Environment, 114, PP. 2011-2025.
  25. Perry, S.L., 2004, Spaceborne and Airborne Remote Sensing Systems for Miner Exploration-Case Histories Using Infrared Spectroscopy, King P.L., Ramsey M.S., Swayze G.A., (Eds), Infrared Spectroscopy in Geochemistry, Exploration Geochemistry, and Remote Sensing, Mineralogic Association of Canada, London, Canada, PP. 227-240.
  26. Rowan, L.C., Goetz, A.F.H. & Ashley, R.P., 1977, Discrimination of Hydrothermally Altered and Unaltered Rocks in Visible and Near Infrared mu$ltispectral im$ages, Geophysics, 42, PP. 522-535.
  27. Sabins, F.F., 1987, Remote Sensing, Principles and Interpretation, New York: W.H. Freeman Company.
  28. Shippert, P., 1992, Introduction to Hyperspectral Image Analysis, Ph.D. thesis, Geography Department, University of Auckland, New Zealand, 504.
  29. Stoklin, J., 1968, Structural History and Tectonics of Iran, A Review American Association of Petroleum Geologists Bulletin, 52, PP. 1229-1258.
  30. Tangestani, M.H., Mazhari, N., Ager, B. & Moore, F., 2008, Evaluating Advance Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Data for Alteration Zone Enhancement in a Semi-Arid Area, Northern Shahr-e-Babak, SE Iran, International Journal of Remote Sensing, 29, PP. 2833-2850.
  31. Tangestani, M.H. & Jaffari, L., 2012, Effect Calibration ASTER Datas in Lithological Enhancements, A Case Study Neyriz Ophiolite Complex, Journal of Earth Sciences, 84, PP. 129-138.
  32. Tangestani, M.H., Jaffari, L., Robert, K. & Vincent, B.B., 2011, Spectra Characterization and ASTER-Based Lithological Mapping of an Ophiolite Complex: A Case Study from Neyriz Ophiolite, SW Iran, Remote Sensing of Environment, 115, PP. 2243-2254.
  33. Tommaso, I. & Rubistein, N., 2006, Hydrothermal Alteration Mapping Using ASTER Data in the Infier Nillo Porphyry Deposite, Argentina, Ore Geology Reviews.
  34. Tompkins, S., Mustard, J.F., Pieters, C.M. & Forsyth, D.W., 1997, Optimization of Endmembers for Spectral Mixture Analysis, Remote Sensing of Environment, Vol. 59, PP. 472-489.
  35. Tonooka, H. & Iwasaki, A., 2004, Improvement of ASTER/SWIR Crosstalk Correction, Proc, SPIE 5234, Sensors, Systems, and Next-Generation Satellites.
  36. Vincent, R.K., 1997, Fundamentals of Geological and Environmental Remote Sensing,
  37. Waterman, G.C. & Hamilton, R.L., 1975, The Sarcheshmeh Porphyry Copper Deposit, Economic Geology, 70, PP. 568-576.
  38. Zhang, X., Pazner, M. & Duke, N., 2007, Lithologic and Mineral Information Extraction Forgold Exploration Using ASTER Data in the South Chocolate Mountains (California), ISPRS Journal of Photogrammetry & Remote Sensing, 62, PP. 271-282.