بررسی عملکرد الگوریتم‌های تخمین غلظت گاز گلخانه‌ای CO2، براساس داده‌های ماهوارة گوست (GOSAT) و ایستگاه‌های زمینی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری هواشناسی دانشگاه هرمزگان

2 دانشیار علوم و تکنولوژی محیط زیست

3 دانشیار سنجش از راه دور، پژوهشکده هواشناسی، گروه کاوش های جوی

4 دانشیار، پژوهشکده هواشناسی، گروه پژوهشی هواشناسی سینوپتیکی و دینامیکی

چکیده

افزایش سطح غلظت گازهای گلخانه‌ای و به‌تبع آن، گرم‌شدن کرة زمین و تغییرات آب‌وهوایی یکی از مهم‌ترین چالش‌های قرن بیست‌ویکم شناخته شده است. این پژوهش عملکرد الگوریتم‌های موجود در بازیابی غلظت گازهای گلخانه‌ای دی‌اکسید کربن را، براساس داده‌های مشاهداتی ماهوارة نظارت بر گازهای گلخانه‌ای گوست (GOSAT)، در مقایسه با داده‌های مرجع به‌دست‌آمده از شبکة سطحی (TCCON)، در هشت سایت منتخب در دورة زمانی 2015-2011 بررسی می‌کند. الگوریتم‌های مورد ارزیابی عبارت‌اند از الگوریتم NIES، ACOS و RemoTeC (SRFP). این الگوریتم‌ها بر بازیابی فراوانی ستونی از گازهای مورد نظر متمرکز شده‌اند تا از مقادیر مولکولی هوای خشک اتم دی‌اکسید کربن (XCO2) بهره بگیرند. برای ارزیابی محصولات هر الگوریتم با مقدار معادل مشاهداتی زمینی آن، از شاخص‌های آماری اریبی (Bias)، جذر میانگین مربع خطاها (RMSE)، خطای مطلق (MAE)، انحراف معیار (SD) و ضریب همبستگی پی‌یرسون (CR) در هر ایستگاه استفاده شده است. نتایج بررسی مقادیر داده‌شده نشان می‌دهد که، در بیشتر ایستگاه‌های زمینی مورد نظر، به‌ترتیب الگوریتم‌‌های NIES، ACOS، RemoTeC (SRFP) دارای کمترین خطای RMSE، MAE، و کمترین خطای اریبی بوده‌اند. همچنین، کمترین مقادیر همبستگی (بین هر الگوریتم و شبکة سطحی) متعلق به الگوریتم (SRFP) و بیشترین مقادیر آن، درمورد بیشتر ایستگاه‌ها، متعلق به الگوریتم NIES در یک میانگین پنج‌ساله (2015-2011) است. 

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of CO2 Greenhouse Gas Estimation Algorithms Based on GOSAT Satellite Data and Ground-based Observation Stations

نویسندگان [English]

  • Samira Karbasi 1
  • Hossein Malakooti 2
  • Mehdi Rahnama 3
  • Majid Azadi 4
1 Ph.D. Candidate of Meteorology, University of Hormozgan
2 Associate Professor of Environmental Science and Technology
3 Associate professor, Atmospheric Science and Meteorological Research Center (ASMERC)
4 Associate professor of Meteorology, Atmospheric Science and Meteorological Research Center (ASMERC)
چکیده [English]

In this report, we compare data products from three different algorithms with the reference data obtained by ground-based high-resolution Fourier Transform Spectrometers (g-b FTSs)  in the Total Carbon Column Observing Network (TCCON), with the 8 selected sites in five years(2011-2015). The algorithms evaluated are NIES, ACOS and SRFP algorithms. These algorithms are focused on retrieving the column abundance of the CO2 to take advantage of the molecular amounts of dry air carbon dioxide (XCO2). To evaluate the products of each algorithm with its equivalent ground observations, statistical indices such as Bias error, root mean square error (RMSE), absolute error (MAE), standard deviation (SD), and Pearson correlation coefficient (CR) were used. By examining the values presented by each algorithm and comparing it with the ground observation values, it can be concluded that the NIES, ACOS, and RemoTeC (SRFP) algorithms have the lowest RMSE, Bias and MAE error respectively. The best agreements with TCCON measurements in the most stations were detected for NIES 02.xx. The SRFP algorithm has a significant difference in estimating CO2 retrieving rates compared to the other two algorithms. So that the lowest correlation values belong to the SRFP algorithm and the highest correlation, values belong to the NIES algorithm.

کلیدواژه‌ها [English]

  • GOSAT Satellite
  • Carbon Dioxide (CO2)
  • Greenhouse Gas
  • Retrieving Algorithm
Butz, A., Hasekamp, O.P., Frankenberg, C., Aben, I., 2009. Retrievals Of Atmospheric CO2 From Simulated Space-Borne Measurements Of Backscattered Near-Infrared Sunlight: Accounting For Aerosol Effects, Appl. Optics, 48: 3322–3336, doi:10.1364/AO.48.003322.
Butz, A., Hasekamp, O., Frankenberg, C., Vidot, J., Aben, I., 2010. CH4 Retrievals From Space Based Solar Backscatter Measurements: Performance Evaluation Against Simulated Aerosol And Cirrus Loaded Scenes. Journal of Geophysical Research: Atmospheres (1984–2012), 115.
Cogan, A. J., Boesch, H., Parker, R. J., Feng, L., Palmer, P. I., Blavier, J.-F. L., Deutscher, N. M., Macatangay, R., Notholt, J., Roehl, C., Warneke, T. and Wunch, D, 2012.  Atmospheric Carbon Dioxide Retrieved From The Greenhouse Gases Observing SATellite (GOSAT): Comparison With Ground-Based TCCON Observations And GEOS-Chem Model Calculations, journal of geophysical research117: D21301.
Crisp, D., Bosch, H., Brown, L., Castano, R., Christi, M., Connor, B., Frankenberg, C., McDuffie, J., Miller, C., Natraj, V., 2010. OCO (Orbiting Carbon Observatory)-2 Level 2 Full Physics Retrieval Algorithm Theoretical Basis. Internet: http://disc. sci. gsfc. nasa. gov/acdisc/documentation/ OCO-2_L2_FP_ATBD_v1_rev4_Nov10. Pdf.
Crisp, D., et al., 2012. The ACOS XCO2 Retrieval Algorithm, Part II: Global XCO2 Data Characterization, Atmos. Meas. Tech., 5, 1–60, www.atmosmeas-tech-discuss.net/5/1/2012/ doi:10.5194/amtd-5-1-2012.
Hase, F., Blumenstock, T., Dohe, S., Groß, J., Kiel, M, 2014. Karlsruhe010.11 TCCON Data From Karlsruhe, Germany, Release GGG2014R1. TCCON Data Archive, Hosted By The  Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. DOI: 10.14291/tccon. ggg2014. karlsruhe01. R1/1182416
Kuze, A., Suto, H., Nakajima, M., Hamazaki, T., 2009. Thermal And Near Infrared Sensor For Carbon Observation Fourier-Transform Spectrometer On The Greenhouse Gases Observing Satellite For Greenhouse Gases Monitoring Appl. Optics, 48, 6716–6733, doi:10.1364/AO.48.006716.
Morino, I., Matsuzaki, T., Shishime. A, 2014. Tsukuba020.03 TCCON Data From Tsukuba, Ibaraki, Japan, 125HR, Release GGG2014R0. TCCON Data Archive, Hosted By The Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. DOI: 10.14291/tccon. ggg2014.tsukuba02. R0/ 1149301
 
O'Dell, C., Connor, B., Bösch, H., Frankenberg, C., Castano, R., Christi, M., Eldering, D., Fisher, B. and Gunson, M, 2012 The ACOS CO2 Retrieval Algorithm–Part 1: Description And Validation Against Synthetic Observations, Atmospheric Measurement Techniques, 5: 99-121.
 Oshchepkov, S., et al. 2012, Effects Of Atmospheric Light Scattering On Spectroscopic Observations Of Greenhouse Gases From Space. Part 1: Validation Of PPDF-Based CO2 Retrievals From GOSAT, J. Geophys. Res117: D12305.
 Parker, R., et al. 2011, Methane Observations From The Greenhouse Gases Observing SATellite: Comparison To Ground-Based TCCON Data And Model Calculations, Geophys. Res. Lett 38: L15807. doi:10.1029/2011GL047871.
Shiomi, K., Kawakami, S., Ohyama, H., Arai, K., Okumura, H., Taura, C., saga010.01 T. Fukamachi, M. Sakashita. 2014. TCCON data From Saga, Japan, Release GGG2014R0. TCCON Data Archive, Hosted By The Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. DOI: 10.14291/tccon. ggg2014. saga01. R0/1149283
Sussmann, R., Rettinger, M, 2014. garmisch01 0.75 TCCON Data from Garmisch, Germany, Release GGG2014R0. TCCON Data Archive, Hosted By The Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. DOI: 10.14291/tccon. ggg2014.garmisch01. R0/ 1149299
Taylor, K.E, 2001, Summarizing Multiple Aspects Of Model Performance In A Single Diagram. J. Geophys. Res.,106: 7183-7192, (also see PCMDI Report 55, http://wwwpcmdi.llnl.gov/publications/ab55.html)
Washenfelder, R. A., Toon, G. C., Blavier, J. F. L., Yang, Z., Allen, N. T., Wennberg, P. O., Vay, S. A., Matross, D. M. and Daube, B. C, 2006. Carbon Dioxide Column Abundances At The Wisconsin Tall Tower Site, J. Geophys. Res 111(D22): 1–11.
Wunch, D., Toon, G. C., Wennberg, P. O., Wofsy, S. C., Stephens, B. B., Fischer, M. L., Uchino, O. and et al, 2010a, Calibration of the Total Carbon Column Observing Network Using Aircraft Profile Data, Atmos, Meas. Tech 3: 1351–1362.
Yoshida, Y., Ota, Y.,  Eguchi, N., Kikuchi, N., Nobuta, K., Tran, H., Morino, I. and Yokota, T., 2011, Retrieval algorithm for CO 2 and CH 4 Column Abundances From Short-Wavelength, Atmos. Meas. Tech., 4 : 717–734.
Wennberg, P. O., Wunch, D., Roehl, C., Blavier, J.F., Toon, G.C., Allen, N, lamont010.32 P. Dowell, K. Teske, C. Martin, J. Martin. 2014. TCCON Data From Lamont, Oklahoma, USA, Release GGG2014R0. TCCON Data Archive, Hosted By The Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. DOI: 10.14291/tccon. ggg2014.lamont01. R0/1149159
Wennberg, P.O., Roehl, C., Wunch, D., Toon, G. C., Blavier, J.F, parkfalls010.44 R. Washenfelder, G. Keppel-Aleks, N. Allen, J. Ayers. 2014. TCCON Data From Park Falls, Wisconsin, USA, Release GGG2014R0. TCCON Data Archive, Hosted By The Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. DOI: 10.14291/tccon. ggg2014. parkfalls01. R0/1149161
Blumenstock, T., Hase, F., Schneider, M., Garc´ıa, O.E., Sep´ulveda, E, 2014. izana01 2.37 TCCON Data From Izana, Tenerife, Spain, Release GGG2014R0. TCCON Data Archive, Hosted By The Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. DOI: 10.14291/tccon.ggg2014.izana01.R0/ 1149295
Warneke, T., Messerschmidt, J. , Notholt, J., Weinzierl, C.,  Deutscher, N., Petri, C., Orleans010.13 P. Grupe, C. Vuillemin, F. Truong, M. Schmidt, M. Ramonet, E. Parmentier. 2014. TCCON Data From Orleans, France, Release GGG2014R0. TCCON Data Archive, Hosted By The Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. DOI: 10.14291/tccon. ggg2014. orleans01. R0/1149276