روشی بهبودیافته به‌منظور طبقه‌بندی طیفی‌ـ مکانی تصاویر ابرطیفی به‌کمک الگوریتم‌های ژنتیک وزن‌دار و شبکۀ عصبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه مهندسی نقشه برداری، دانشکده مهندسی، دانشگاه زابل، زابل، ایران

2 استادیار گروه جغرافیا، دانشکده ادبیات و علوم انسانی، دانشگاه بیرجند، بیرجند، ایران

3 دانشیار گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران

چکیده

سابقه و هدف: فنّاوری سنجش از دور ابرطیفی، در دو دهۀ گذشته، شاهد پیشرفت چشمگیری بوده است. این پیشرفت در طراحی و ساخت سنجنده‌ها و همچنین در توسعه و اجرای روش‌های پردازش داده بسیار مشهود است. امروزه بیشتر تحقیقات، در زمینۀ فنّاوری سنجش از دور ابرطیفی، بر طبقه‌بندی این تصاویر تأکید دارد. روش‌های طبقه‌بندی تصاویر ابرطیفی در دو دستۀ طبقه‌بندی طیفی یا مبتنی‌بر پیکسل و طبقه‌بندی طیفی مکانی یا مبتنی‌بر شیء قرار می‌گیرند. در این تحقیق، به طبقه‌بندی
طیفی‌ مکانی تصویر ابرطیفی، در محیطی شهری، پرداخته شده است. ازآنجاکه محیط‌های شهری، از نظر عناصر به‌کاررفته در آنها، ویژگی‌های پیچیده‌ای دارند، داده‌های ابرطیفی به شناسایی و استخراج و تولید نقشه از عناصر سازندۀ آنها کمک مؤثری می‌کنند. شناسایی مواد گوناگون در محیط‌های شهری اهمیت بسیاری در زمینۀ کاربردهای گوناگون، همچون ارتباط تلفن‌های همراه، واقعیت مجازی، معماری و مدل‌سازی شهری و برنامه‌ریزی و مدیریت شهرها دارد.
مواد و روش‌ها: در این تحقیق، برای ارزیابی روش‌ پیشنهادی از دو تصویر ابرطیفی پاویا و برلین، که جزء تصاویر معیار در حوزۀ سنجش از دور ابرطیفی است، استفاده شد. در روش پیشنهادی، ابتدا ابعاد تصویر ابرطیفی به‌کمک الگوریتم PCA کاهش می‌یابد؛ سپس ده ویژگی مکانی میانگین، انحراف معیار، درجۀ تباین، یکنواختی، همبستگی، نبودِ تشابه، انرژی، آنتروپی، تبدیل موجک و فیلتر گابور از روی باندهای کاهش‌یافته استخراج می‌شود. در ادامه، الگوریتم ژنتیک وزن‌دار بر ویژگی‌های طیفی و مکانی به‌دست‌آمده اعمال می‌شود و در انتها، ویژگی‌های حاصل به‌کمک الگوریتم MLP طبقه‌بندی می‌شود.
نتایج و بحث: در آزمون‌های انجام‌شده در زمینۀ الگوریتم ژنتیک، کروموزوم‌ها دارای ژن‌هایی برابر با تعداد ویژگی‌های طیفی و مکانی‌اند. در این آزمون‌ها، میزان تقاطع و جهش به‌ترتیب برابر با 5/0 و 05/0 در نظر گرفته شد. همچنین، برای ایجاد تناسب بین دو پارامتر دقت و زمان محاسبات، تعداد جمعیت اولیه 30 و حداکثر تعداد تکرار، برای توقف، 100 در نظر گرفته شد. البته در عمل، درمورد هر دو تصویر ابرطیفی با توجه به استفاده از شرط فعال برای توقف الگوریتم، روند تکرار به مرحلۀ 100 نمی‌رسد و قبل ‌از آن، الگوریتم به وضعیت پایدار می‌رسد و متوقف می‌شود. الگوریتم طبقه‌بندی MLP با سه لایۀ پنهان، شامل و 6 و 8 نورون، اجرا و با پانصد تکرار ارزیابی شد. روش‌ طبقه‌بندی پیشنهادی بیان‌شده با الگوریتم‌های SVM، MLP و MSF مقایسه شد. در هر دو تصویر ابرطیفی، نقشۀ‌ حاصل از روش پیشنهادی در مقایسه با سایر الگوریتم‌ها مناطق یکنواخت‌تری را دربرمی‌گیرد. روش پیشنهادی، در تصویر پاویا، باعث افزایش 13، 7 و 6درصدی و در تصویر برلین، باعث افزایش 9، 6 و 5درصدی پارامتر ضریب کاپا، در قیاس با به‌ترتیب الگوریتم‌های SVM، MLP و MSF شده است. دلیل این افزایش دقت روش پیشنهادی می‌تواند استفاده از اطلاعات نزدیک‌ترین همسایگی و دو مرحلۀ کاهش ابعاد باشد.
نتیجه‌گیری: در این تحقیق، روشی جدید به‌منظور طبقه‌بندی طیفی‌ مکانی تصاویر ابرطیفی معرفی شد. در روش پیشنهادی، ابتدا ابعاد تصویر ابرطیفی کاهش ‌یافت و ده ویژگی،‌ به‌منزلۀ اطلاعات نزدیک‌ترین همسایگی‌ها، از باندهای کاهش‌یافته استخراج شد. در ادامه، الگوریتم ژنتیک وزن‌دار روی ویژگی‌های به‌دست‌آمده، به‌منظور کاهش وابستگی بین آنها، اعمال شد. الگوریتم ژنتیک یکی از کارآمدترین و مؤثرترین روش‌ها در کاهش ابعاد تصاویر ابرطیفی است. در الگوریتم باینری ژنتیک، هر کروموزوم دارای مقادیر یک و صفر است؛ درحالی‌که در الگوریتم ژنتیک وزن‌دار، مقادیر وزنی بین صفر و یک است. روش پیشنهادی روی دو تصویر ابرطیفی پاویا و برلین اجرا شد که آزمایش‌ها برتری کمّی و کیفی به‌کارگیری این روش را نشان می‌دهد. کم‌بودن دقت نتایج در تصویر برلین می‌تواند به‌دلیل پیچیدگی این تصویر، در مقایسه با تصویر پاویا باشد.

کلیدواژه‌ها


عنوان مقاله [English]

An Improved Approach for Spectral-spatial Classification of Hyperspectral Images using Weighted Genetic and Neural Network Algorithms

نویسندگان [English]

  • Davood Akbari 1
  • Ali Ashrafi 2
  • Mostafa Yaghoobzadeh 3
1 Associate Professor, Department of Geomatic Engineering, Faculty of Engineering, University of Zabol, Zabol, Iran,
2 Assistant Professor, Department of Geography, Faculty of Literature and Humanities, University of Birjand, Birjand, Iran
3 Associate Professor, Department of science and water engineering, Faculty of Agriculture, University of Birjand, Birjand, Iran
چکیده [English]

Introduction: Hyperspectral remote sensing technology has seen significant progress in the last two decades. This progress is very evident in the design and construction of sensors as well as in the development and implementation of data processing methods. Today, most researches in the field of hyperspectral remote sensing technology emphasize on the classification of these images. Classification methods of hyperspectral images are divided into two categories: spectral or pixel-based classification and spectral-spatial or object-based classification. In this research, the spectral-spatial classification of hyperspectral image in an urban environment has been discussed. Since an urban environment has complex features in terms of elements, hyperspectral data effectively help to identify, extract and produce a map of their constituent elements. Identification of different materials in urban environments is very important in various applications, such as mobile phone communications, virtual reality, architecture and urban modeling, and planning and management of cities.
Material and methods: In this research, two hyperspectral images of Pavia and Berlin, which are part of the standard images in the field of hyperspectral remote sensing, were used to evaluate the proposed method. In the proposed method, the dimensions of the hyperspectral image are first reduced with the help of the PCA algorithm, Then, ten spatial features mean, standard deviation, degree of variation, homogeneity, correlation, dissimilarity, energy, entropy, wavelet transform and Gabor filter are extracted from the reduced bands. Then, the weighted genetic algorithm is applied to the obtained spectral and spatial features and finally the obtained features are classified with the help of MLP algorithm.
Results and discussion: In the tests conducted for the genetic algorithm, chromosomes have genes equal to the number of spectral and spatial features. In these tests, the crossover and mutation rates were considered as 0.5 and 0.05, respectively. Also, to create a balance between the two parameters of accuracy and calculation time, the initial population size was 30 and the maximum number of repetitions for stopping was 100. However, in practice for both hyperspectral images, since the active condition is used to stop the algorithm, the iteration process does not reach step 100 and before that the algorithm reaches a stable state and stops. The MLP classification algorithm was implemented with 3 hidden layers consisting of 5, 6 and 8 neurons and evaluated with 500 iterations. The proposed classification method was compared with SVM, MLP and MSF algorithms. In both hyperspectral images, the map obtained by the proposed method includes single nova regions in comparison with other algorithms. In the Pavia image, the proposed method has caused an increase of 13, 7, and 6 percent, and in the Berlin image, it has caused an increase of 9, 6, and 5 percent, in the Kappa coefficient parameter, respectively, compared to the SVM, MLP, and MSF algorithms. The reason for this increase in the accuracy of the proposed method can be the use of nearest neighbor information and two stages of dimensionality reduction.
Conclusion: In this research, a new method for spectral-spatial classification of hyperspectral images was introduced. In the proposed method, the dimensions of the hyperspectral image were first reduced and ten features were extracted as the nearest neighborhood information from the reduced bands. Then, a weighted genetic algorithm was applied to the obtained features to reduce the dependence between them. Genetic algorithm is one of the most efficient and effective methods in reducing the dimensionality of hyperspectral images. In the binary genetic algorithm, each chromosome has values ​​of one and zero, while in the weighted genetic algorithm, the weight values ​​are between zero and one. The proposed method was implemented on two hyperspectral images of Pavia and Berlin, and the quantitative and qualitative experiments show the superiority of the proposed method. The lower accuracy of the results in the Berlin image may be due to the complexity of this image compared to the Pavia image.

کلیدواژه‌ها [English]

  • Hyperspectral images
  • Spectral-spatial classification
  • Neural network
  • Spatial features
  • Weighted genetic algorithm
Acquarelli, J., Marchiori, E., Buydens, L.M.C., Tran, T. & Laarhoven, T.V., 2018, Spectral-Spatial Classification of Hyperspectral Images: Three Tricks and a New Learning Setting, Remote Sens., 10. https://doi.org/ 10.3390/rs10071156.
Ahmad, M., Shabbir, S., Roy, S.K., Hong, D., Wu, X., Yao, J., Khan, A.M., Mazzara, M., Distefano, S. & Chanussot, J., 2022, Hyperspectral Image Classification—Traditional to Deep Models: A Survey for Future Prospects, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 15. https://doi.org/ 10.1109/JSTARS.2021.3133021.
Akbari, D., 2017, Improving Spectral–Spatial Classification of Hyperspectral Imagery Using Spectral Dimensionality Reduction Based on Weighted Genetic Algorithm, J. Indian Soc. Remote Sens., 45, PP. 927-937. https://doi.org/10.1007/s12524-016-0652-8.
Akbari, D., 2019, Improved Neural Network Classification of Hyperspectral Imagery Using Weighted Genetic Algorithm and Hierarchical Segmentation, IET Image Process., 13, PP. 2169-2175. https://doi.org/ 10.1049/iet-ipr.2018.5693.
Amigo, J.M., 2019, Hyperspectral Imaging, View Series: Data Handling in Science and Technology, 32, PP. 0-630.
Benediktsson, J.A., Pesaresi, M. & Amason, K., 2003, Classification and Feature Extraction for Remote Sensing Images from Urban Areas Based on Morphological Transformations, IEEE Trans. Geos. and Remote Sens., 41, PP. 1940–1949. https://doi.org/10.1109/TGRS. 2003.814625.
Benediktsson, J.A., Palmason, J.A. & Sveinsson, J.R., 2005, Classification of Hyperspectral Data from Urban Areas Based on Extended Morphological Profiles, IEEE Trans. Geos. and Remote Sens., 43, PP. 480-491. https://doi.org/10.1109/TGRS.2004.842478.
Chan, R.H., Kan, K.K., Nikolova, M. & Plemmons, R.J., 2020, A Two-Stage Method for Spectral–Spatial Classification of Hyperspectral Images, J. Math Imaging Vis., 62, PP. 790–807. https://doi.org/10.1007/ s10851-019-00925-9.
Chang, C.-I, 2003, Hyperspectral Imaging: Techniques for Spectral Detection and Classification, Orlando, FL: Kluwer Academic. https://doi.org/10.1007/978-1-4419-9170-6.
Chi, M., Kun, Q., Benediktsson, J.A. & Feng, R., 2009, Ensemble Classification Algorithm for Hyperspectral Remote Sensing Data, IEEE Geosci. Remote Sens. Lett., 6, PP. 762–766. https://doi.org/10.1109/LGRS.2009.2024624.
Ding, H., Xu, L., Wu, Y. & Shi, W., 2020, Classification of Hyperspectral Images by Deep Learning of Spectral-Spatial Features, Arab. J. Geosci., 13, PP. 464. https://doi.org/10.1007/s12517-020-05487-4.
Fauvel, M., Tarabalka, Y., Benediktsson, J.A., Chanussot, J. & Tilton, J.C., 2013, Advances in Spectral-Spatial Classification of Hyperspectral Images, Proceedings of the IEEE, 101, PP. 652-675. https://doi.org/ 10.1109/JPROC.2012.2197589.
German Aerospace Centre (DLR), http://www.dlr.de.
Gonzalez, R.C. and Woods, R.E., 2002, Digital Image Processing, Prentice Hall, pp. 617-626.
Haralick, R.M., Shanmugam, K. & Dinstein, I., 1973, Textural Features for Image Classification, IEEE Trans. on Systems, Man, and Cybernetics, SMC-3, PP. 610-621. https://doi.org/10.1109/TSMC.1973.4309314.
Hasani, H., Samadzadegan, F. & Reinartz, P., 2017, A Metaheuristic Feature-Level Fusion Strategy in Classification of Urban Area Using Hyperspectral Imagery and LiDAR Data, European Journal of Remote Sensing, 50, PP. 222-236. https://doi.org/ 10.1080/22797254.2017.1314179.
He, X. & Chen, Y., 2021, Modifications of the Multi-Layer Perceptron for Hyperspectral Image Classification, Remote Sensing, 13, P. 3547. https://doi.org/10.3390/rs13173547.
Homayouni, S. & Roux, M., 2003, Material Mapping from Hyperspectral Images Using Spectral Matching in Urban Area, IEEE Workshop on Advances in Techniques for analysis of Remotely Sensed Data, NASA Goddard center, Washington DC, USA.
 
Hong, D., Wu, X., Ghamisi, P., Chanussot, J., Yokoya, N. & Zhu, X.X., 2020, Invariant Attribute Profiles: A Spatial-Frequency Joint Feature Extractor for Hyperspectral Image Classification, IEEE Trans. Geosci. Remote Sens., 58, PP. 3791–3808. https://doi.org/10.48550/arXiv.1912.08847.
Huang, C.-L. & Wang, C.-J., 2006, A GA-Based Feature Selection and Parameter Optimization for Support Vector Machines, Expert Systems with Application, PP. 231-240. https://doi.org/10.1016/j.eswa. 2005.09.024.
Huang, X. & Zhang, L., 2009, A Comparative Study of Spatial Approaches for Urban Mapping Using Hyperspectral Rosis Images over Pavia City, Northern Italy, International Journal of Remote Sensing, 30, PP. 3205–3221. https://doi.org/10.1080/ 01431160802559046.
Li, S., Song, W., Fang, L., Chen, Y., Ghamisi, P. & Benediktsson, J.A., 2019, Deep Learning for Hyperspectral Image Classification: An Overview, IEEE Trans. Geosci. Remote Sens., PP. 1-20. https://doi.org/10.1109/ TGRS.2019.2907932.
Lin, M., Jing, W., Di, D., Chen, G. & Song, H., 2022, Multi-Scale U-Shape MLP for Hyperspectral Image Classification, IEEE Geoscience and Remote Sensing Letters, 19, PP. 1-5. https://doi.org/10.1109/LGRS.2022. 3141547.
Mallat, S., 1999, A Wavelet Tour of Signal Processing, Academic Press, San Diego.
Pan, E., Mei, X., Wang, Q., Ma, Y. & Ma, J., 2020, Spectral-Spatial Classification for Hyperspectral Image Based on a Single GRU, Neurocomputing, 387, PP. 150–160. https://doi.org/10.1016/j.neucom.2020.01.029.
Pesaresi, M. & Benediktsson, J.A., 2001, A New Approach for the Morphological Segmentation of High-Resolution Satellite Imagery, IEEE Trans. Geosci. Remote Sens., 39, PP. 309–320. https://doi.org/10.1109/ 36.905239.
Shaw, G. & Manolakis, D., 2002, Signal Processing for Hyperspectral Image Explotation, IEEE Signal Process. Mag., 19. https://doi.org/10.1109/79.974715.
Tan, X. & Xue, Z., 2022, Spectral-Spatial Multi-Layer Perceptron Network for Hyperspectral Image Land Cover Classification, European Journal of Remote Sensing, 55, PP. 409-419. https://doi.org/ 10.1080/22797254.2022.2087540.
Tarabalka, Y., Chanussot, J. & Benediktsson, J.A., 2010, Segmentation and Classification of Hyperspectral Images Using Minimum Spanning Forest Grown from Automatically Selected Markers, IEEE Trans. Syst., Man, Cybern. B, Cybern., 40, PP. 1267–1279. https://doi.org/10.1109/ TSMCB.2009.2037132.
Tarabalka, Y., Tilton, J.C., Benediktsson, J.A. & Chanussot, J., 2011, A Marker-Based Approach for the Automated Selection of a Single Segmentation from a Hierarchical Set of Image Segmentations, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/ JSTARS.2011.2173466.
Theodoridis, S. & Koutroumbas, K., 2006, Pattern Recognition, United states of America, Academic Press, PP. 266-271. https://doi.org/10.1109/TNN.2008.929642.
Vapnik, V., 1995, The Nature of Statistical Learning Theory, New York, NY: Springer-Verlag.
Varshney, P.K. & Arora, M.K., 2004, Advanced Image Processing Techniques for Remotely Sensed Hyperspectral Data, Springer Berlin Heidelberg New York. https://doi.org/10.1007/978-3-662-05605-9.
Wang, A., Li, M. & Wu, H., 2022, A Novel Classification Framework for Hyperspectral Image Data by Improved Multilayer Perceptron Combined with Residual Network, Symmetry, 14, P. 611. https://doi.org/ 10.3390/sym14030611.
Zhou, H., Mao, Z. & Wang, D., 2005, Classification of Coastal Areas by Airborne Hyperspectral Image, in Proc. SPIE Opt. Technol. Atmos., Ocean, Environ. Stud., 5832, PP. 471–476.
Zhuo, L. & Zheng, J., 2008, A Genetic Algorithm Based Wrapper Feature Selection Method for Classification of Hyperspectral Image Using Support Vector Machine, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, PP. 397-402. https://doi.org/10.1117/12.813256.