تحلیل حساسیت رفتار طیفی برگ گیاه در برابر متغیرهای بیوفیزیکی‌– بیوشیمیایی برگ با استفاده از مدل انتقال تابش PROSPECT

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکدۀ جغرافیا و علوم محیطی، دانشگاه حکیم سبزواری، سبزوار، ایران

2 مرکز مطالعات سنجش از دور و GIS، دانشکدۀ علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

3 استادیار، گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکدۀ برنامه‌ریزی و علوم محیطی، دانشگاه تبریز، تبریز، ایران

4 دانشیار، گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکدۀ جغرافیا، دانشگاه تهران، تهران، ایران

چکیده

سابقه و هدف: تعیین نحوۀ اثرگذاری محتوای بیوشیمیایی برگ در بازتاب و رفتار طیفی آن، ازطریق سنجش از دور، می‌تواند به درک فرایند اکوسیستم و پارامترهای آن، همچون تنش آبی گیاه، کمک شایان توجهی کند. ویژگی‌های نوری تاج‌پوشش بسیار تحت تأثیر ویژگی‌های نوری برگ‌ها و خاک زمینه است. همچنین به‌دلیل دردسترس‌نبودن اطلاعات دقیق دربارۀ ویژگی‌های نوری برگ‌ها، تفسیر اطلاعات طیفی را که ازطریق سنجش از دور گرد می‌آیند، با محدودیت‌هایی روبه‌رو کرده است. ساختار داخلی برگ میزان انعکاس و عبور را در کل طیف الکترومغناطیس، کنترل می‌کند اما، برای کسب اطلاعات دقیق و توصیف جامع دربارۀ ویژگی‌های نوری برگ، مدل‌های فیزیکی توسعه یافته‌اند. مدل‌های برگشت‌پذیر همانند PROSPECT علاوه‌بر محاسبۀ پاسخ طیفی برگ، امکان محاسبۀ مقدار کمّی ویژگی‌های درونی برگ، مانند میزان کلروفیل، محتوای آب و ساختار برگ را فراهم می‌کنند. با استفاده از ویژگی برگشت‌پذیری، می‌توان براساس طیف جمع‌آوری‌شده ازطریق سنجنده‌ها، کمّیت آب برگ‌ها و زیست‌تودۀ آنها را مشخص کرد. بنابراین استفاده از این مدل‌ها و تلفیق آن با داده‌های دورسنجی که برای گیاه غیرتخریبی است، امکان پایش در بُعد زمان و مکان را فراهم می‌آورد و می‌تواند راه‌گشای مطالعات و مدل‌سازی‌های مرتبط با ویژگی‌های درونی برگ گیاهان باشد.
مواد و روش‌ها: در این پژوهش، اثر کمّی متغیرهای بیوفیزیکی‌ بیوشیمیایی برگ شامل محتوای کلروفیل برگ، ساختار برگ و محتوای آب آن در میزان بازتاب تحلیل شده است. برای این منظور، مدل انتقال تابش PROSPECT که برای شبیه‌سازی رفتار طیفی برگ گیاهان توسعه داده شده، به کار رفته است. در نتیجه، تأثیر کمّیت پارامترهای برگ شامل کلروفیل، محتوای آب و ساختار برگ در شکل منحنی طیفی برگ بررسی شده است. روش کار بدین‌ترتیب است که به‌منظور مطالعۀ تأثیرات ناشی از هریک از پارامترها، دو پارامتر دیگر ثابت در نظر گرفته می‌شوند و با تغییر مقدار پارامتر مورد نظر، منحنی‌های طیفی متناظر با مقادیر انتخاب‌شده، با به‌کارگیری مدل PROSPECT استخراج می‌شود. با مقایسۀ منحنی‌های حاصل و تحلیل آنها، تأثیر پارامتر مورد نظر در بازتاب طیفی برگ مطالعه و بررسی می‌شود.
نتایج و بحث: نتایج تحقیق حاکی از آن است که افزایش کلروفیل، با اثر در کاهش انعکاس، به افزایش میزان شاخص‌های گیاهی مثلثی منجر می‌شود. براساس ساختار برگ و لایه‌های داخلی، در محدودۀ فروسرخ نزدیک، امکان تشخیص گیاهان تک‌لپه‌ای، دولپه‌ای و نیز گیاهان پیر وجود دارد. همچنین در محدودۀ فروسرخ نزدیک، میزان انعکاس در گیاهان پیر، گیاهان دولپه‌ای و تک‌لپه‌ای به‌ترتیب کاهش می‌یابد. در محدودۀ فروسرخ نزدیک، در گیاهان دولپه‌ای که دارای پارانشیم اسفنجی‌اند، بیشتر از گیاهان تک‌لپه‌ای انتظار بازتاب می‌رود. گیاهان تک‌لپه‌ای، به‌دلیل بازتاب کمترشان در محدودۀ 1400 تا 1900 نانومتر، از سایر گیاهان تفکیک‌پذیرند. اثرگذاری محتوای آب در بازتاب طیفی برگ از طول‌موج 1000 نانومتر آغاز می‌شود و تا پایان محدودۀ انعکاسی، 2500 نانومتر، ادامه دارد و با افزایش محتوای آب، کاهش بازتاب رخ می‌دهد. خشک‌شدن گیاه، تا مراحلی، تأثیر چندانی در بازتاب ندارد ولی خشکیدن آب برگ، بیشتر از مقداری معین (03/0 تا 04/0 گرم بر سانتی‌متر مربع) باعث افزایش چشمگیر بازتاب، به‌ویژه خارج از باندهای جذبی آب می‌شود. بنابراین با پیداکردن نقاط بحرانی منحنی بازتاب در مقابل محتوای آب می‌توان به تشخیص تنش‌های شدید آبی در گیاهان کمک کرد. با بررسی نمودارها می‌توان پی برد که نقطۀ بحرانی در حوالی محتوای آب 03/0 تا 04/0 گرم بر سانتی‌متر مربع اتفاق می‌افتد.
نتیجه‌گیری: با یافتن نقاط بحرانی منحنی بازتاب در مقابل محتوای آب، می‌توان تنش‌های شدید آبی در گیاهان را تشخیص داد. در مدل PROSPECT، اثر خاک زمینه در بازتاب طیفی گیاهان در نظر گرفته نمی‌شود؛ بنابراین استفاده از مدل‌هایی مانند SAIL و SLC پیشنهاد می‌شود که برای این منظور ارتقا یافته‌اند. همچنین با توجه به اینکه خروجی مدل PROSPECT منحنی طیفی برگ گیاه است، می‌توان استفاده از مد‌ل‌های انتقال تابش تاج‌پوشش گیاه، مانند مدل SAIL و SLC را نیز بررسی کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Sensitivity Analysis of the Spectral Response of the Plant Leaf to the Biophysical-Biochemical Variables Using the PROSPECT Radiative Transfer Model

نویسندگان [English]

  • Elaheٍ Akbari 1
  • Mohammad Hajeb 2
  • Mehrdad Jeihouni 3
  • Saeid Hamzeh 4
1 Assistant Professor, Remote Sensing and GIS, Faculty of Geography and Environmental Sciences, Hakim Sabzevari University, Sabzevar, Iran
2 Remote Sensing and GIS Center, Dep. of Earth Science, Shahid Beheshti University, Tehran, Iran
3 Assistant Professor, Dep. of Remote Sensing and GIS, Faculty of Planning and Environmental Sciences, University of Tabriz, Tabriz, Iran
4 Associate Professor, Dep. of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Tehran, Iran
چکیده [English]


Background and aim: Determining how the leaf biochemical content affects its reflectance and spectral behavior through remote sensing can contribute to understanding the ecosystem process and its parameters, such as plant water stress. The optical properties of the canopy are strongly dependent on the optical properties of the leaves and the soil. Also, due to the non-availability of detailed information on the optical properties of leaves, the interpretation of spectral data collected through remote sensing has faced limitations. The internal structure of the leaf controls the amount of reflectance and transmission in the entire electromagnetic spectrum, but physical models have been developed to obtain detailed information and a comprehensive description of the optical properties of the leaf. In addition to calculating the leaf’s spectral response, reversible models such as PROSPECT can calculate a small number of internal characteristics of the leaf, such as the amount of chlorophyll, leaf water content, and leaf structure. Using the reversibility property, it is possible to quantitatively determine the amount of water in the leaves and a small amount of biomass from the spectrum collected through the sensors. Therefore, the use of these models and their integration with remote sensing data, which are non-destructive for the plant and provide the possibility of monitoring in time and space, can open the way for studies and modeling related to the internal characteristics of plant leaves.
Materials and methods: In this research, the effect of leaf biophysical-biochemical variables, including leaf chlorophyll content (LCC), leaf structure, and leaf water content on reflectance, were quantitatively analyzed. To do so, the PROSPECT leaf radiative transfer model, which was developed to simulate the spectral behavior of plant leaves, was used. As a result, the effect of the quantity of leaf parameters, including chlorophyll, leaf water content, and leaf structure, on the shape of the spectral curve of the leaf has been investigated. The study employed two other parameters considered constant to study the effects caused by each parameter. By changing the value of the desired parameter, the spectral curves corresponding to the selected values are extracted using the PROSPECT model. The effect of the desired parameter on the leaf’s spectral reflectance was investigated by comparing and analyzing the resulting curves.
Results and discussion: The research results indicate that the increase of leaf chlorophyll with the effect of reducing the reflectance leads to the rise in triangular plant indices. Based on the leaf structure and inner layers in the near-infrared (NIR) spectrum, it is possible to distinguish monocots, dicots, and old plants. Also, in the NIR spectrum, the amount of reflectance in old, dicotyledonous, and monocots decreases, respectively. In dicots with spongy parenchyma, more reflectance is expected in the NIR spectrum than in monocots. Monocots can be distinguished from other plants due to their lower reflectance in the 1400 to 1900 nm range. The influence of water content on leaf spectral reflectance starts from the wavelength of 1000 nm and continues until the end of the reflective range, 2500 nm, and with the increase of water content, the reflectance decreases. The drying of the plant does not have much effect on the reflectance, but drying more than a certain amount of leaf water content (0.03 to 0.04 ) causes a significant increase in the reflectance, especially outside the water-absorbing bands. Therefore, finding the critical points of the reflectance curve against the water content can help detect severe water stress in plants. By examining the graphs, we can see that the critical point occurs around the leaf water content of 0.03 to 0.04 .
Conclusion: Finding the critical points of the reflectance curve against leaf water content can be used to detect severe water stress in plants. In the PROSPECT model, the effect of the ground soil on the spectral reflectance of plants is not considered. Thus, it is suggested that models such as SAIL and SLC be used, which have been improved for this purpose. Also, considering that the PROSPECT model output is the plant’s leaf spectral curve, canopy radiative transfer models such as the SAIL and SLC can also be employed.

کلیدواژه‌ها [English]

  • PROSPECT
  • Radiative transfer model
  • Leaf chlorophyll content
  • Leaf structure
  • Leaf water content
  • Remote sensing
Akbari, E., Boloorani, A.D., Verrelst, J., Pignatti, S., Neysani Samany, N., Soufizadeh, S. & Hamzeh, S., 2023, Biophysical Variable Retrieval of Silage Maize with Gaussian Process Regression and Hyperparameter Optimization Algorithms, Remote Sensing, 15(14), P. 3690. https://doi.org/10.3390/ rs15143690.
Alavipanah, S.K., 2011, Principles of modern remote sensing and interpretation of satellite images and aerial photographs, Tehran University, Tehran. (in Persian).
Ali, A.M., Darvishzadeh, R., Skidmore, A.K., Duran, I.V., Heiden, U. & Heurich, M., 2016, Estimating Leaf Functional Traits by Inversion of PROSPECT: Assessing Leaf

 
    Dry Matter Content and Specific Leaf Area in Mixed Mountainous Forest, International Journal of Applied Earth Observation and Geoinformation, 45, PP. 66–76. https://doi.org/10.1016/j.jag.2015.11.004.
Allen, W.A., Gausman, H.W., Richardson, A.J. & Thomas, J.R., 1969, Interaction of Isotropic Light with a Compact Plant Leaf, J. Opt. Soc. Am., 59(10), PP. 1376–1379. https://doi.org/10.1364/JOSA.59.001376.
Allen, W.A., Gausman, H.W. & Richardson, A.J., 1970, Mean Effective Optical Constants of Cotton Leaves, J. Opt. Soc. Am., 60(4), PP. 542–547. https://doi.org/ 10.1364/JOSA.60.000542.
Dashti Ahangar, A., Darvishzadeh, R., Matkan, A.A. & Alizadeh, H., 2014, Comparison of Numerical Methods and Reference Tables in Inversion of Radiation Transfer Models and Extraction of Plant Parameters, 21th Geomatics Conference. (in Persian).
Gausman, H.W., Allen, W.A. & Escobar, D.E., 1974, Refractive Index of Plant Cell Walls, Applied Optics, 13(1), PP. 109–111. https://doi.org/10.1364/AO.13.000109.
Hodanova, D., 1985, Leaf Optical Properties, in Photosynthesis during Leaf Development (Zdenek Sest~k, Ed.), Academia Praha, Prague. https://doi.org/ 10.3390/plants10071455.
Hunter, P.D., Gilvear, D.J., Tyler, A.N., Willby, N.J. & Kelly, A., 2010, Mapping Macro-Phytic Vegetation in Shallow Lakes Using the Compact Airborne Spectrographic Imager (CASI), Aquatic Conservation: Marine and Freshwater Ecosystems, 20, PP. 717–727. DOI:10.1002/aqc.1144.
Jacquemoud, S. & Baret, F., 1990, PROSPECT: A Model of Leaf Optical Properties Spectra, Remote Sensing of Environment, 34(2), PP. 75–91. https://doi.org/10.1016/ 0034-4257(90)90100-Z.
Jacquemoud, S. & Ustin, S.L., 2001, Leaf Optical Properties: A State of the Art, In 8th International Symposium of Physical Measurements & Signatures in Remote Sensing (pp. 223-332), CNES Aussois France.
Jarocińska, A.M., 2014, Radiative Transfer Model Parametrization for Simulating the Reflectance of Meadow Vegetation, MISCELLANEA GEOGRAPHICA – Regional Studies on Development, 18(2), PP. 5–9. DOI:10.2478/mgrsd-2014-0001.
Jiang, H., Zhao, D., Cai, Y. & An, S., 2012, A Method for Application of Classification Tree Models to Map Aquatic Vegetation Using Remotely Sensed Images from Different Sensors and Dates, Sensors, 12(9), PP. 12437–12454. https://doi.org/ 10.3390/s120912437.
Ma, Z.G., Chen, X., Wang, Q., Li, P.H. & Jiapaerl, G., 2012, Retrieval of Leaf Biochemical Properties by Inversed PROSPECT Model and Hyperspectral Indices: An Application to Populous Euphratica Polymorphic Leaves, J. Arid. Land., 4(1), PP. 52–62.
Poorghasemi, N., Abbasi, M., Jafari, A. & Riyahi Bakhtyari, H.R., 2021, Spectral Reflectance Simulation and Estimation of Chlorophyll and Water Content of Pistacia Mutica Leaf Based on PROSPECT4 Model, Journal of Wood and Forest Science and Technology, 28(3), PP. 53–69. doi: 10.22069/ jwfst.2021.19284.1934. (in Persian).
Qiu, F., Chen, J.M., Croft, H., Li, J., Zhang, Q., Zhang, Y. & Ju, W., 2019, Retrieving Leaf Chlorophyll Content by Incorporating Variable Leaf Surface Reflectance in the PROSPECT Model, Remote Sensing, 11(13), P. 1572. https://doi.org/10.3390/rs11131572.
Rivera, J.P., Verrelst, J., Leonenko, G. & Moreno, J., 2013, Multiple Cost Functions and Regularization Options for Improved Retrieval of Leaf Chlorophyll Content and LAI through Inversion of the PROSAIL Model, Remote Sens., 5(7), PP. 3280–3304. https://doi.org/10.3390/rs5073280.
Roberts, D.A., Roth, K.L. & Perroy, R.L., 2016, 14 Hyperspectral Vegetation Indices, Hyper-spectral Remote Sensing of Vegetation, 309.
Stokes, G.G., 1862, On the Intensity of the Light Reflected from or Transmitted through a Pile of Plates, Proc. Roy. Soc. Lend., 11, PP. 545–556 (30 Nov. 1860 to 27 Feb. 1862). https://doi.org/10.1364/JOSA. 37.000818.
Vanderbilt, V.C. & Grant, L., 1986, Polarization Photometer to Measure Bidirectional Reflectance Factor R (55, 0; 55, 180) of Leaves, Optical Engineering, 25(4), PP. 566–571.
Verhoef, W., 1984, Light Scattering by Leaf Layers with Application to Canopy Reflectance Modeling: the SAIL Model, Remote Sensing of Environment, 16, PP. 125–141.
Verhoef, W., 1985, Earth Observation Modeling Based on Layer Scattering Matrices, Remote Sensing of Environment, 17, PP. 165–178.
Verhoef, W. & Bach, H., 2007, Coupled Soil–Leaf-Canopy and Atmosphere Radiative Transfer Modeling to Simulate Hyperspectral Multi-Angular Surface Reflectance and TOA Radiance Data, Remote Sensing of Environment, 109(2), PP. 166–182. https://doi.org/10.1016/j.rse.2006.12.013.
Wang, Z., Skidmore, A.K., Wang, T., Darvishzadeh, R. & Hearne, J., 2015, Applicability of the PROSPECT Model for Estimating Protein and Cellulose + Lignin in Fresh Leaves, Remote Sensing of Environment, 168, PP. 205–218. https://doi.org/ 10.1016/j.rse.2015.07.007.
Woolley, J.T., 1971, Reflectance and Transmittance of Light by Leaves, Plant Physiology, 47(5), PP. 656–662. https://doi.org/ 10.1104/pp.47.5.656.
Zhang, Y.Q., Chen, J.M., Miller, J.R. & Noland, T.L., 2008, Retrieving Chlorophyll Content in Conifer Needles from Hyperspectral Measurements, Can. J. Remote Sens., 34(3), PP. 296–310.
Zhang, Y., Li, X., Wang, C., Zhang, R., Jin, L., He, Z., Tian, S., Wu, K. & Wang, F., 2022, PROSPECT-PMP+: Simultaneous Retrievals of Chlorophyll a and b,