Adame, M.F., Connolly, R.M., Turschwell, M.P., Lovelock, C.E., Fatoyinbo, T., Lagomasino, D., Goldberg, L.A., Holdorf, J., Friess, D.A. & Sasmito, S.D., 2021, Future Carbon Emissions from Global Mangrove Forest, Loss. Glob. Chang. Biol., 27, PP. 2856–2866. (https://doi.org/10.1111/gcb.15571).
Aghaei, M., Khavarian, H. & Mostafazadeh, R., 2020, Prediction of Land Use Changes Using the CA-Markov and LCM Models in the Kozehtopraghi Watershed in the Province of Ardabil, Watershed Management Research Journal, 33(3), PP. 91–107. (https:// doi.org/10.22092/wmej.2019.128009.1267).
Ahmad, H., Abdallah, M., Jose, F., Elzain, H.E., Bhuyan, M.S., Shoemaker, D.J. & Selvam, S., 2023, Evaluation and Mapping of Predicted Future Land Use Changes Using Hybrid Models in a Coastal Area, Ecological Informatics, 78, P. 102324. (https://doi.org/10.1016/j.ecoinf.2023.102324).
Amoah, M.K.M., 2022, Mapping Wetlands Using GIS and Remote Sensing Techniques, A Case Study of Wetlands in Greater Accra, Ghana, [Master's thesis, Bowling Green State University]. OhioLINK Electronic Theses and Dissertations Center. (https://geogis.bgsu.edu/ theses/ETD_Amoah_08-28-2022).
Ao, Y., Li, H., Zhu, L., Ali, S. & Yang, Z., 2019, The Linear Random Forest Algorithm and Its Advantages in Machine Learning Assisted Logging Regression Modeling, Journal of Petroleum Science and Engineering, 174, PP. 776–789. (https://doi.org/10.1016/j.petrol.2018.11.067).
Arowolo, A.O., Deng, X., Olatunji, O.A. & Obayelu, A.E., 2018, Assessing Changes in the Value of Ecosystem Services in Response to Land-Use/Land-Cover Dynamics in Nigeria, Science of the Total Environment, 636, PP. 597–609. (https://doi.org/10.1016/ j.scitotenv.2018.04.277).
Atasoy, M., 2020, Assessing the Impacts of Land-Use/Land-Cover Change on the Development of Urban Heat Island Effects, Environment, Development and Sustainability, 22(8), PP. 7547–7557. (https://doi.org/ 10.1007/s10668-019-00535-w).
Erfanifard, Y., Lotfi Nasirabad, M. & Stereńczak, K., 2022, Assessment of Iran’s Mangrove Forest Dynamics (1990–2020) Using Landsat Time Series, Remote Sensing, 14(19), P. 4912. (https://doi.org/ 10.3390/rs14194912).
Etemadi, H., Smoak, J.M. & Abbasi, E., 2021, Spatiotemporal Pattern of Degradation in Arid Mangrove Forests of the Northern Persian Gulf, Oceanologia, 63(1), PP. 99–114. (https://doi.org/10.1016/j.oceano.2020.10.003).
Fischer, J., Wirtz, S. & Scherer, V., 2023, Random Forest Classifier and Neural Network for Fraction Identification of Refuse-Derived Fuel Images, Fuel, 341, P. 127712. (https://doi.org/10.1016/j.fuel.2023.127712).
Gholami, D.M. & Jaafari, A., 2020, Changes in Landward and Seaward Extent of Mangroves in the Coastal Areas of the Hormozgan Province, Iranian Journal of Forest and Range Protection Research, 18(1), PP. 1–13.
(https://doi.org/10.1016/j.ecss.2020.106644).
Girma, R., Fürst, Ch & Moges, A., 2022, Land Use Land Cover Change Modeling by Integrating Artificial-Neural-Network with Cellular Automata-Markov Chain Model in Gidabo River Basin, Main Ethiopian Rift, Environmental Challenges, 6, P. 100419. (https://doi.org/10.1016/j.envc.2021.100419).
Gouvêa, L.P., Serrão, E.A., Cavanaugh, K., Gurgel, C.F., Horta, P.A. & Assis, J., 2022, Global Impacts of Projected Climate Changes on the Extent and Aboveground Biomass of Mangrove Forests, Divers. Distrib., 28, PP. 2349–2360.
(https://doi.org/10.1111/ddi.13631).
Hakim, L., Siswanto, D. & Makagoshi, N., 2017, Mangrove Conservation in East Java: The Ecotourism Development Perspectives, Journal of Tropical Life Science, 7 (3), PP. 277–285. (https://doi.org/10.11594/jtls.07.03.14).
Hall, C.M., 2001, Trends in Ocean and Coastal Tourism: The End of the Last Frontier?, Ocean & Coastal Management, 44(9-10), PP. 601–618. (https://doi.org/10.1016/S0964-5691(01)00071-0).
Hamilton, S.E. & Casey, D., 2016, Creation of a High Spatio‐Temporal Resolution Global Database of Continuous Mangrove Forest Cover for the 21st Century (CGMFC‐21), Global Ecology and Biogeography, 25(6), PP. 729–738. (https://doi.org/10.1111/geb.12449).
Idajati, H., Pamungkas, A. & Kukinul Siswanto, V., 2016, The Level of Participation in Mangrove Ecotourism Development, Wonorejo Surabaya, Procedia - Social and Behavioral Sciences, 227, PP. 515–520. (https://doi.org/10.1016/j.sbspro.2016.06.109).
Islam, K., Rahman, M.F. & Jashimuddin, M., 2018, Modeling Land Use Change Using Cellular Automata and Artificial Neural Network: The Case of Chunati Wildlife Sanctuary, Bangladesh, Ecological Indicators, 88, PP. 439–453. (https://doi.org/10.1016/ j.ecolind.2018.01.047).
Jafarnia, S., Hojjati, S.M. & Kooch, Y., 2012, The Effect of Soil and Water Characteristics on the Vegetative Parameters of Hara Trees in the Qeshm Mangrove Habitat, Hormozgan Province, Environmental Sciences, 9 (4), PP. 133–148.
(https://envs.sbu.ac.ir/article_96416.html?lang=en).
Jahdi, R., 2023, Land Use Changes Modeling and Future Predictions Using CA-ANN Simulation in the Watershed of 25 (Shenroud, Siahkal), Journal of Geography and Environmental Studies, 12 (46), PP. 164–179. (https://doi.org/20.1001.1.20087845.1402. 12.46.10.4).
John, J., Nandhini, A., Velayudhaperumal Chellam, P. & Sillanpää, M., 2022, Microplastics in Mangroves and Coral Reef Ecosystems: A Review, Environ. Chem. Lett., 20, PP. 397–416. (https://doi.org/ 10.1007/s10311-021-01326-4).
Kamran, Khan, A.K., Khayyam, U., Waheed, A. & Khokhar, M.F., 2023, Exploring the Nexus between Land Use Land Cover (LULC) Changes and Population Growth in a Planned City of Islamabad and Unplanned City of Rawalpindi, Pakistan, Heliyon, 9 (2), P. e13297. (https://doi.org/ 10.1016/j.heliyon.2023.e13297).
Karimzadeh Motlagh, Z., Lotfi, A., Pourmanafi, S. & Ahmadizadeh, S., 2022, Evaluation and Prediction of Land-Use Changes Using the CA_Markov Model, Geography and Environmental Planning, 33(2), PP. 63–80. (https://doi.org/10.22108/gep.2022.130601.1458).
Khan, A.R., Khan, A., Masud, S. & Rahman, R.M., 2021, Analyzing the Land Cover Change and Degradation in Sundarbans Mangrove Forest Using Machine Learning and Remote Sensing Technique, In Advances in Computational Intelligence: 16th International Work-Conference on Artificial Neural Networks, IWANN 2021, Virtual Event, June 16–18, 2021, Proceedings, Part II 16 (PP. 429–438), Springer International Publishing. (https://doi.org/10.1007/978-3-030-85099-9_35).
Lacaux, J.P., Tourre, Y.M., Vignolles, C., Ndione, J.A. & Lafaye, M., 2007, Classification of Ponds from High-Spatial Resolution Remote Sensing: Application to Rift Valley Fever epidemics in Senegal, Remote Sens. Environ, 106, PP. 66–74. (https://doi.org/10.1016/j.rse.2006.07.012).
Lambin, E.F., Geist, H.J. & Lepers, E., 2003, Dynamics of Land-Use and Land-Cover Change in Tropical Regions, Annual Review of Environment and Resources, 28, PP. 205–241. (https://doi.org/10.1146/ annurev.energy.28.050302.105459).
Liu, J., Dietz, T., Stephen, R., Carpenter, S.R. & Taylor, W.W., 2007, Complexity of Coupled Human and Natural Systems, Science, 317(5844). (https://doi.org/10.1126/ science.1144004).
Lotfikhah, S., Frouzd, M. & Danehkar, A., 2018, Coastal Management Plan (SMP) of Hormozgan Province. Review Plan for Integrated Management Studies of Coastal Areas of Hormozgan Province, Iran's Structural Consulting Engineers. (General Directorate of Coastal and Port Engineering, Vice-Chancellor of Engineering and Development of Infrastructure Affairs, Ports and Maritime Organization of the Islamic Republic of Iran).
Mafi-Gholami, D., Zenner, E.K., Jaafari, A. & Bui, D.T., 2020, Spatially Explicit Predictions of Changes in the Extent of Mangroves of Iran at the End of the 21st Century, Estuarine, Coastal and Shelf Science, 237, P. 106644. (https://doi.org/ 10.1016/j.ecss.2020.106644).
McDonald, A.D., Ferris, T.K. & Wiener, T.A., 2020, Classification of Driver Distraction: A Comprehensive Analysis of Feature Generation, Machine Learning, and Input Measures, Human Factors, 62(6), PP. 1019–1035. (https://doi.org/10.1177/0018720819856454).
Mirzaei, A., 2021, Proportion Measurement of Territorial Waters of Hormozgan Province for Marine Tourism Activities Zoning, Master's Thesis in the Field of Natural Resources-Environmental Engineering, Agriculture and Natural Resources Campus, Faculty of Natural Resources, Tehran.
Morshed, S.R., Fattah, Md.A., Haque, Md.N. & Morshed, S.Y., 2021, Future Ecosystem Service Value Modeling with Land Cover Dynamics by Using Machine Learning Based Artificial Neural Network Model for Jashore City, Bangladesh, Physics and Chemistry of the Earth, 126, P. 103021. (https://doi.org/10.1016/j.pce.2021.103021).
Munthali, M., Mustak, Sk., Abiodun, A. & Davis, N., 2020, Modelling Land Use and Land Cover Dynamics of Dedza District of Malawi Using Hybrid Cellular Automata and Markov Model, Remote Sensing Applications Society and Environment, 17(4), P. 100276. (https://doi.org/10.1016/ j.rsase.2019.100276).
Petrosian, H., Danekar, A., Ashrafi, S. & Feghhi, J., 2017, Analysis of Rhizophora Mucronata Habitat Condition by Comparing Environmental Variables in Mangrove Forest of Sirik, Minab and Jask Habitats in Coastline of Oman Sea, Forest and Wood Products, 70(1), PP. 39–48. (https://jfwp.ut.ac.ir/article_61609.html?lang=en).
Quang, N.H., Quinn, C.H., Carrie, R., Stringer, L.C., Hue, L.T.V., Hackney, Ch.R. & Tan, D.V., 2021.
Comparisons of Regression and Machine Learning Methods for Estimating Mangrove Above-Ground Biomass Using Multiple Remote Sensing Data in the Red River Estuaries of Vietnam, Remote Sensing Applications: Society and Environment, 26, P. 100725. (
https://eprints.whiterose.ac.uk/185739/).
Rayegani, B., 2019. Investigating the threats of mangrove forests with the help of remotely sensed data, Journal of Spatial Analysis Environmental Hazards, 6 (2), PP. 53-68. (https://doi.org/10.29252/jsaeh.6.2.53).
Sagar, S., Roberts, D., Bala, B. & Lymburner, L., 2017, Extracting the Intertidal Extent and Topography of the Australian Coastline from a 28 Year Time Series of Landsat Observations, Remote Sensing of Environment, 195, PP. 153–169.
(https://doi.org/10.1016/j.rse.2017.04.009).
Sejati, A.W., Buchori, I. & Rudiarto, I., 2019, The Spatio-Temporal Trends of Urban Growth and Surface Urban Heat Islands over Two Decades in the Semarang Metropolitan Region, Sustainable Cities and Society, 46(101432).
(https://doi.org/10.1016/j.scs.2019.101432).
Shafizadeh-Moghadam, H., 2019, Improving Spatial Accuracy of Urban Growth Simulation Models Using Ensemble Forecasting Approaches, Computers, Environment and Urban Systems, 76, PP. 91–100. (https://doi.org/10.1016/j.compenvurbsys. 2019.04.005).
Shimu, S.A., Aktar, M., Afjal, M.I., Nitu, A.M., Uddin, M.P. & Al Mamun, M., 2019, NDVI Based Change Detection in Sundarban Mangrove Forest Using Remote Sensing Data, In 2019 4th International Conference on Electrical Information and Communication Technology (EICT) (PP. 1-5). IEEE.
Sobhani, P. & Danehkar, A., 2023a, Natural Features and Management Areas of Khamir and Qeshm Mangrove Forests, Iran Nature, 8(4), PP. 97–112. (https://doi.org/10.22092/irn.2023.362533).
Sobhani, P. & Danehkar, A., 2023b, Spatial-Temporal Changes in Mangrove Forests for Analyzing Habitat Integrity: A Case of Hara Biosphere Reserve, Iran, Environmental and Sustainability Indicators, 100293. (https://doi.org/10.1016/j.indic.2023.100293).
Sobhani, P., Esmaeilzadeh, H. & Mostafavi, H., 2021, Simulation and Impact Assessment of Future Land Use and Land Cover Changes in Two Protected Areas in Tehran, Iran, Sustainable Cities and Society, 75, P. 103296. (https://doi.org/10.1016/j.scs.2021.103296).
Subedi, P., Subedi, K. & Thapa, B., 2013, Application of a Hybrid Cellular Automaton – Markov (CA-Markov) Model in Land-Use Change Prediction: A Case Study of Saddle Creek Drainage Basin, Florida, Applied Ecology and Environmental Sciences, 1(6), PP. 126–132.
(https://doi.org/10.12691/aees-1-6-5).
Sudhana, S.A., Sakti, A.D., Syahid, L.N., Prasetyo, L.B., Irawan, B., Kamal, M. & Wikantika, K., 2020,
Detecting Mangrove Deforestation Using Multi Land Use Land Cover Change Datasets: A Comparative Analysis in Southeast Asia, In IOP Conference Series: Earth and Environmental Science, 500(1), P. 012014. IOP Publishing. (
https://doi.org/10.1088/1755-1315/500/1/012014).
Statistical Center of Iran, 2016. Results of the General Population and Housing Census, Office of the Director, Public Relations and International Cooperation, PP. 1-150. (https://amar.org.ir/).
Verburg, P.H., Overmars, K.P., Huigen, M.G.A., de Groot, W.T. & Veldkamp, A., 2006, Analysis of the Effects of Land Use Change on Pas, Applied Geography, 26(2), PP. 153–173. (http://dx.doi.org/10.1016/j.apgeog.2005.11.005).
Walters, B.B., Rönnbäck, P., Kovacs, J.M., Crona, B., Hussain, S.A., Badola, R. & Dahdouh-Guebas, F., 2009, Erratum to "Ethnobiology, Socio-Economics and Management of Mangrove Forests: A Review", Aquatic Botany, 90(3), PP. 273–273. (https://doi.org/10.1016/j.aquabot.2008.02.009).
Wang, W., Fu, H., Lee, S.Y., Fan, H. & Wang, M., 2020, Can Strict Protection Stop the Decline of Mangrove Ecosystems in China? From Rapid Destruction to Rampant Degradation, Forests, 11(1), P. 55. (https://doi.org/10.3390/f11010055).
Wibowo, A. & Supriatna, S., 2011, Coastal Environmental Vulnerability on Coastal Cities in Indonesia, Jurnal Ilmu dan Teknologi Kelautan Tropis, 3(2). (https://doi.org/10.28930/jitkt.v3i2.7818).
Xia, Q., Qin, C.Z., Li, H., Huang, C., Su, F.Z. & Jia, M.M., 2020, Evaluation of Submerged Mangrove Recognition Index Using Multi-Tidal Remote Sensing Data, Ecol. Indic., 113, P. 106196. (https://doi.org/10.1016/ j.ecolind.2020.106196).
Yaghoubzadeh, M., Salmanmahiny, A., Moslehi, M., Danehkar, A. & Tabrizi, A.R.M., 2021, Investigation of Port Effects on Vegetative and Reproductive Characteristics of Grey Mangrove (Avicennia Marina (Forssk.) Vierh.) of Iran, Iranian Journal of Forest and Poplar Research, 28(3), PP. 244–256. (https://doi.org/10.22092/IJFPR.2020.342904.1930).
Zhang, L., Huettmann, F., Liu, S., Sun, P., Yu, Z., Zhang, X. & Mi, C., 2019, Classification and Regression with Random Forests as a Standard Method for Presence-Only Data SDMs: A Future Conservation Example Using China Tree Species, Ecological Informatics, 52, PP. 46–56.
(https://doi.org/10.1016/j.ecoinf.2019.05.003).
Zhang, J., Li, X., Zhang, C., Yu, L., Wang, J., Wu, X. & Shi, T., 2022, Assessing Spatiotemporal Variations and Predicting Changes in Ecosystem Service Values in the Guangdong–Hong Kong–Macao Greater Bay Area, GIScience & Remote Sensing, 59(1), PP.184–199. (https://doi.org/ 10.1080/15481603.2021.2022427).