Abbaspour, M., Mahiny, A.S., Arjmandy, R. & Naimi, B., 2011, Integrated Approach for Land Use Suitability Analysis, International Agrophysics, 25(4). bwmeta1.element.agro-babd4e54-f64e-4413-9f46-3df1073f8d02.
Abrahms, B., Welch, H., Brodie, S., Jacox, M.G., Becker, E.A., Bograd, S.J., ... & Hazen, E.L., 2019,
Dynamic Ensemble Models to Predict Distributions and Anthropogenic Risk Exposure for Highly Mobile Species, Diversity and Distributions, 25(8), PP. 1182-1193.
https://doi.org/10.1111/ddi.12940.
Ahmadzadeh, F., Ebrahimi, E. & Naimi, B., 2017,
Species Distribution Potential of Striped Hyaena (Hyaena Hyaena) in Response to Climate Change in Iran, Environmental Sciences, 15(4), PP. 215–232 (In Persian).
https://envs.sbu.ac.ir/article_97888.html.
Ahmadzadeh, F., Amiri, N. & Ebrahimi, E., 2018, Spatial Modeling of Species Distribution and Predicting Potential Distribution of the Iranian Long-Legged Wood Frog, Iranian Journal of Remote Sensing & GIS, 10(2), PP. 95–108 (In Persian).
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
[1]. Species-Environment Relationship Theory
Aiello-Lammens, M.E., Boria, R.A., Radosavljevic, A., Vilela, B. & Anderson, R.P., 2015,
spThin: An R Package for Spatial Thinning of Species Occurrence Records for Use in Ecological Niche Models, Ecography, 38(5), PP. 541–545.
https://doi.org/10.1111/ecog.01132.
Amiri, N., Vaissi, S., Aghamir, F., Saberi-Pirooz, R., Rödder, D., Ebrahimi, E. & Ahmadzadeh, F., 2021, Tracking Climate Change in the Spatial Distribution Pattern and the Phylogeographic Structure of Hyrcanian Wood Frog, Rana Pseudodalmatina (Anura: Ranidae), Journal of Zoological Systematics and Evolutionary Research, 59(7), PP. 1604–1619.
Andrew, M.E. & Fox, E., 2020,
Modelling Species Distributions in Dynamic Landscapes: The Importance of the Temporal Dimension, Journal of Biogeography, 47(7), 1510–1529.
https://doi.org/10.1111/jbi.13832.
Araújo, M.B., Cabeza, M., Thuiller, W., Hannah, L. & Williams, P.H., 2004,
Would Climate Change Drive Species out of Reserves? An Assessment of Existing Reserve-Selection Methods, Global Change Biology, 10(9), 1618–1626.
https://doi.org/10.1111/j.1365-2486.2004.00828.x.
Araújo, M.B., Mestre, F. & Naimi, B., 2020,
Ecological and Epidemiological Models are Both Useful for SARS-CoV-2, Nature Ecology & Evolution, 4(9), PP. 1153–1154.
https://doi.org/10.1038/s41559-020-1246-y.
Bateman, B.L., VanDerWal, J. & Johnson, C.N., 2012,
Nice Weather for Bettongs: Using Weather Events, not Climate Means, in Species Distribution Models, Ecography, 35(4), PP. 306–314.
https://doi.org/10.1111/ j.1600-0587.2011.06871.x.
Beudels, R.C., Durant, S.M. & Harwood, J., 1992, Assessing the Risks of Extinction for Local Populations of Roan Antelope (Hippotragus Equinus), Biological Conservation, 61(2), PP. 107–116.
Boali, A., Asgari, H.R., Mohammadian Behbahani, A., Salmanmahiny, A. & Naimi, B., 2024,
Remotely Sensed Desertification Modeling Using Ensemble of Machine Learning Algorithms, Remote Sensing Applications: Society and Environment, 34.
https://doi.org/10.1016/j.rsase.2024.101149.
Booth, T.H., Nix, H.A., Busby, J.R. & Hutchinson, M.F., 2014,
Bioclim: The First Species Distribution Modelling Package, Its Early Applications and Relevance to Most Current MaxEnt Studies, Diversity and Distributions, 20(1), PP. 1–9.
https://doi.org/10.1111/ddi.12144.
Brun, P., Karger, D.N., Zurell, D., Descombes, P., DeWitte, L.C., De Lutio, R., Wegner, J.D. & Zimmermann, N.E., 2023,
Rank-Based Deep Learning from Citizen-Science Data to Model Plant Communities, BioRxiv 2023.05.30.542843.
https://doi.org/10.1101/2023.05.30.542843.
Brun, P., Karger, D.N., Zurell, D., Descombes, P., de Witte, L.C., de Lutio, R., Wegner, J.D. & Zimmermann, N.E., 2024,
Multispecies Deep Learning Using Citizen Science Data Produces More Informative Plant Community Models, Nature Communications, 15(1), P. 4421.
https://doi.org/10.1038/ s41467-024-48559-9.
Butchart, S.H., Walpole, M., Collen, B., Van Strien, A., Scharlemann, J.P., Almond, R.E., ... & Watson, R., 2010,
Global Biodiversity: Indicators of Recent Declines, Science, 328(5982), PP. 1164–1168.
https://doi.org/ 10.1126/science.1187512.
CBD; Secretariat of the Convention on Biological Diversity, 2020,
Global Biodiversity Outlook 5, United Nations Convention on Biological Diversity, Montreal.
https://www.cbd.int/gbo5.
Ceballos, G., Ehrlich, P.R. & Dirzo, R., 2017,
Biological Annihilation via the Ongoing Sixth Mass Extinction Signaled by Vertebrate Population Losses and Declines, Proceedings of the National Academy of Sciences of the United States of America, 114(30), PP. E6089–E6096.
https://doi.org/10.1073/pnas.1704949114.
Codron, D., Codron, J., Lee-Thorp, J.A., Sponheimer, M., Grant, C.C. & Brink, J.S., 2009,
Stable Isotope Evidence for Nutritional Stress, Competition, and Loss of Functional Habitat as Factors Limiting Recovery of Rare Antelope in Southern Africa, Journal of Arid Environments, 73(4–5), PP. 449–457.
https://doi.org/10.1016/ j.jaridenv.2008.12.003.
Dobson, R., Challinor, A.J., Cheke, R.A., Jennings, S., Willis, S.G. & Dallimer, M., 2023,
Dynamic SDM: An R Package for Species Geographical Distribution and Abundance Modelling at High Spatiotemporal Resolution, Methods in Ecology and Evolution, 14(5), PP. 1190–1199.
https://doi.org/10.1111/2041-210X.14101
Duan, R.Y., Kong, X.Q., Huang, M.Y., Fan, W.Y. & Wang, Z.G., 2014,
The Predictive Performance and Stability of Six Species Distribution Models, PLoS ONE, 9(11), P. e112764.
https://doi.org/10.1371/journal.pone.0112764.
East, R., 1999, African Antelope Database 1998. International Union for Conservation of Nature/Species Survival Commission Antelope Specialist Group, Gland, Switzerland.
Ebrahimi, E. & Ahmadzadeh, F., 2022,
Dynamics of Habitat Changes as a Result of Climate Change in Zagros Mountains Range (Iran), a Case Study on Amphibians, Nova Biologica Reperta, 9(1), PP. 29–39 (In Persian).
https://doi.org/ 10.29252/nbr.9.1.29.
Ebrahimi, E., Sayahnia, R., Ranjbaran, Y., Vaissi, S. & Ahmadzadeh, F., 2021,
Dynamics of Threatened Mammalian Distribution in Iran’s Protected Areas under Climate Change, Mammalian Biology, June.
https://doi.org/10.1007/s42991-021-00136-z.
Ebrahimi, E., Ranjbaran, Y., Sayahnia, R. & Ahmadzadeh, F., 2022,
Assessing the Climate Change Effects on the Distribution Pattern of the Azerbaijan Mountain Newt (Neurergus Crocatus), Ecological Complexity, 50(2), P. 100997.
https://doi.org/10.1016/ j.ecocom.2022.100997.
Elith, J., Graham, C.H., Anderson, R.P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.McC.M., Townsend Peterson, A., … Zimmermann, N.E., 2006,
Novel Methods Improve Prediction of Species’ Distributions from Occurrence Data, Ecography, 29(2), PP. 129–151.
https://doi.org/10.1111/j.2006.0906-7590.04596.x.
Fernandez, M., Yesson, C., Gannier, A., Miller, P.I. & Azevedo, J.M., 2017,
The Importance of Temporal Resolution for Niche Modelling in Dynamic Marine Environments, Journal of Biogeography, 44(12), PP. 2816–2827.
https://doi.org/ 10.1111/jbi.13080.
Fick, S.E. & Hijmans, R.J., 2017,
WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas, International Journal of Climatology, 37(12), PP. 4302–4315.
https://doi.org/10.1002/JOC. 5086.
Freeman, E.A. & Moisen, G.G., 2008,
A Comparison of the Performance of Threshold Criteria for Binary Classification in Terms of Predicted Prevalence and Kappa, Ecological Modelling, 217(1–2), PP. 48–58.
https://doi.org/10.1016/j.ecolmodel. 2008.05.015.
Ghane-Ameleh, S., Khosravi, M., Saberi-Pirooz, R., Ebrahimi, E., Aghbolaghi, M.A. & Ahmadzadeh, F., 2021,
Mid-Pleistocene Transition as a Trigger for Diversification in the Irano-Anatolian Region: Evidence Revealed by Phylogeography and Distribution Pattern of the Eastern Three-Lined Lizard, Global Ecology and Conservation, 31(May), P. e01839.
https://doi.org/10.1016/j.gecco.2021.e01839.
Ghayoumi, R., Ebrahimi, E.,
Hosseini Tayefeh, F. & Keshtkar, M., 2019,
Predicting the Effects Of Climate Change on the Distribution of Mangrove Forests in Iran Using the Maximum Entropy Model, Journal of RS and GIS for Natural Resources, 10(2), PP. 34–47. (In Persian).
https://dorl.net/dor/http://dorl.net/dor/20.1001.1.26767082.1398.10.2.3.2.
Ghyoumi, R., Ebrahimi, E. & Mousavi, S.M., 2022,
Dynamics of Mangrove Forest Distribution Changes in Iran, Journal of Water and Climate Change, 13(6), PP. 2479–2489.
https://doi.org/10.2166/wcc.2022.069.
Giovanelli, J.G., de Siqueira, M.F., Haddad, C.F. & Alexandrino, J., 2010,
Modeling a Spatially Restricted Distribution in the Neotropics: How the Size of Calibration Area Affects the Performance of Five presence-Only Methods, Ecological Modelling, 221(2), PP. 215–224.
https://doi.org/ 10.1016/j.ecolmodel.2009.10.009.
Gonçalves, J., Alves, P., Pôças, I., Marcos, B., Sousa-Silva, R., Lomba, Â. & Honrado, J.P., 2016,
Exploring the Spatiotemporal Dynamics of Habitat Suitability to Improve Conservation Management of a Vulnerable Plant Species, Biodiversity and Conservation, 25(14), PP. 2867–2888.
https://doi.org/10.1007/s10531-016-1206-7
Grant, C.C., Davidson, T., Funston, P.J. & Pienaar, D.J., 2002,
Challenges Faced in the Conservation of Rare Antelope: A Case Study on the Northern Basalt Plains of the Kruger National Park, Koedoe, 45(2), PP. 45–66.
https://doi.org/10.4102/koedoe.v45i2.26.
Guisan, A., Tingley, R., Baumgartner, J.B., Naujokaitis-Lewis, I., Sutcliffe, P.R., Tulloch, A.I.T., Regan, T.J., Brotons, L., Mcdonald-Madden, E., Mantyka-Pringle, C., Martin, T.G., Rhodes, J.R., Maggini, R., Setterfield, S.A., Elith, J., Schwartz, M.W., Wintle, B.A., Broennimann, O., Austin, M., … & Buckley, Y.M., 2013,
Predicting Species Distributions for Conservation Decisions, Ecology Letters, 16(12), PP. 1424–1435.
https://doi.org/10.1111/ ele.12189.
Guo, Q., 2005, Development of Geospatial Techniques for Ecological Analysis: A Case Study of Sudden Oak Death in California, Doctoral Thesis, University of California, Berkeley.
Harrington, R., Owen-Smith, N., Viljoen, P.C., Biggs, H.C., Mason, D.R. & Funston, P., 1999,
Establishing the Causes of the Roan Antelope Decline in the Kruger National Park, South Africa, Biological Conservation, 90(1), PP. 69–78.
https://doi.org/ 10.1016/S0006-3207(98)00120-7.
Havemann, C.P., Retief, T.A., Tosh, C.A. & de Bruyn, P.J.N., 2016,
Roan Antelope (Hippotragus Equinus) in Africa: A Review of Abundance, Threats and Ecology, Mammal Review, 46(2), PP. 144–158.
https://doi.org/10.1111/mam.12061.
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A., 2005,
Very High Resolution Interpolated Climate Surfaces for Global Land Areas, International Journal of Climatology: A Journal of the Royal Meteorological Society, 25(15), PP. 1965–1978.
https://doi.org/10.1002/joc.1276.
Hijmans, R.J., Phillips, S., Leathwick, J. & Elith, J., 2023,
Package "dismo": Methods for Species Distribution Modeling, That Is, Predicting the Environmental Similarity of Any Site to That of the Locations of Known Occurrences of a Species.
https://cran.r-project.org/web/packages/ dismo/.
Hosseini Tayefeh, F., Izadian, M., Ashoori, A., Jolaee, L. & Ebrahimi, E., 2021,
Trends of Waterbirds Population Changes in Fars Province Wetlands 1988-2018, Environmental Sciences, 19(1), PP. 177–196. (In Persian).
https://doi.org/10.52547/ envs.33047.
Ilanloo, S.S., Ebrahimi, E., Valizadegan, N., Ashrafi, S., Rezaei, H.R. & Yousefi, M., 2020,
Little Owl (Athene Noctua) around Human Settlements and Agricultural Lands: Conservation and Management Enlightenments, Acta Ecologica Sinica, 40(5), PP. 347–352.
https://doi.org/10.1016/ j.chnaes.2020.06.001.
Jetz, W., McGeoch, M.A., Guralnick, R., Ferrier, S., Beck, J., Costello, M.J., Fernandez, M., Geller, G.N., Keil, P., Merow, C., Meyer, C., Muller-Karger, F.E., Pereira, H.M., Regan, E.C., Schmeller, D.S. & Turak, E., 2019,
Essential Biodiversity Variables for Mapping and Monitoring Species Populations, Nature Ecology and Evolution, 3(4), PP. 539–551.
https://doi.org/10.1038/ s41559-019-0826-1.
Kimanzi, J.K. & Wanyingi, J.N., 2014,
The Declining Endangered Roan Antelope Population in Kenya: What Is the Way Forward?, Conference Papers in Science, 2014, PP. 1–6.
https://doi.org/10.1155/2014/ 908628.
Kimathi, E., Tonnang, H.E., Subramanian, S., Cressman, K., Abdel-Rahman, E.M., Tesfayohannes, M., ... & Kelemu, S., 2020,
Prediction of Breeding Regions for the Desert Locust Schistocerca Gregaria in East Africa, Scientific Reports, 10(1), P. 11937.
https://doi.org/10.1038/s41598-020-68895-2.
Kissling, W.D., Ahumada, J.A., Bowser, A., Fernandez, M., Fernández, N., García, E.A., Guralnick, R.P., Isaac, N.J.B., Kelling, S., Los, W., McRae, L., Mihoub, J.B., Obst, M., Santamaria, M., Skidmore, A.K., Williams, K.J., Agosti, D., Amariles, D., Arvanitidis, C., … & Hardisty, A.R., 2018,
Building Essential Biodiversity Variables (EBVs) of Species Distribution and Abundance at a Global Scale, Biological Reviews, 93(1), PP. 600–625.
https://doi.org/10.1111/brv.12359.
Liu, Z., Peng, C., Work, T., Candau, J.-N., Desrochers, A. & Kneeshaw, D., 2018,
Application of Machine-Learning Methods in Forest Ecology, Reviews, 26(4), PP. 339–350.
https://doi.org/10.2307/90026557.
Martin, R.B., 2003, Species Report for Roan Hippotragus Equinus, Sable Hippotragus Niger and Tsessebe Damaliscus Lunatus, Ministry of Environment and Tourism, Windhoek, Namibia.
Mohammadi, S., Ebrahimi, E., Shahriari Moghadam, M. & Bosso, L., 2019,
Modelling Current and Future Potential Distributions of Two Desert Jerboas under Climate Change in Iran, Ecological Informatics, 52, PP. 7–13.
https://doi.org/ 10.1016/j.ecoinf.2019.04.003.
Naimi, B. & Araújo, M.B., 2016,
Sdm: A Reproducible and Extensible R Platform for Species Distribution Modelling, Ecography, 39(4), P. 368–375.
https://doi.org/ 10.1111/ecog.01881.
Naimi, B., Hamm, N.A.S., Groen, T.A., Skidmore, A.K. & Toxopeus, A.G., 2014,
Where is Positional Uncertainty a Problem for Species Distribution Modelling?, Ecography, 37(2), PP. 191–203.
https://doi.org/ 10.1111/J.1600-0587.2013.00205.X.
Naimi, B., Capinha, C., Ribeiro, J., Rahbek, C., Strubbe, D., Reino, L. & Araújo, M.B., 2022,
Potential for Invasion of Traded Birds under Climate and Land‐Cover Change, Global Change Biology, 28(19), PP. 5654–5666.
https://doi.org/10.1111/gcb.16310.
Phillips, S.B., Aneja, V.P., Kang, D. & Arya, S.P., 2006,
Maximum Entropy Modeling of Species Geographic Distributions, International Journal of Global Environmental Issues, 6(2–3), PP. 231–252.
https://doi.org/ 10.1016/j.ecolmodel.2005.03.026.
Pichler, M. & Hartig, F., 2023,
Machine Learning and Deep Learning—A Review for Ecologists, In Methods in Ecology and Evolution, 14(4), PP. 994–1016. British Ecological Society.
https://doi.org/10.1111/ 2041-210X.14061
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N. & Prabhat, 2019,
Deep Learning and Process Understanding for Data-Driven Earth System Science, Nature, 566(7743), PP. 195–204.
https://doi.org/10.1038/s41586-019-0912-1.
Reiss, H., Cunze, S., König, K., Neumann, H. & Kröncke, I., 2011,
Species Distribution Modelling of Marine Benthos: A North Sea Case Study, Marine Ecology Progress Series, 442, PP. 71–86.
https://doi.org/10.3354/ meps09391.
Reside, A.E., Vanderwal, J.J., Kutt, A.S. & Perkins, G.C., 2010,
Weather, Not Climate, Defines Distributions of Vagile Bird Species, PLoS ONE, 5(10).
https://doi.org/ 10.1371/journal.pone.0013569.
Scherrer, D., D’Amen, M., Fernandes, R.F., Mateo, R.G. & Guisan, A., 2018,
How to Best Threshold and Validate Stacked Species Assemblages? Community Optimisation Might Hold the Answer, Methods in Ecology and Evolution, 9(10), PP. 2155–2166.
https://doi.org/10.1111/2041-210X.13041.
Schliep, E.M., Gelfand, A.E., Clark, J.S. & Kays, R., 2018,
Joint Temporal Point Pattern Models for Proximate Species Occurrence in a Fixed Area Using Camera Trap Data, Journal of Agricultural, Biological, and Environmental Statistics, 23(3), PP. 334–357.
https://doi.org/10.1007/s13253-018-0327-8.
Sheykhi Ilanloo, S., Khani, A., Kafash, A., Valizadegan, N., Ashrafi, S., Loercher, F., Ebrahimi, E. & Yousefi, M., 2021,
Applying Opportunistic Observations to Model Current and Future Suitability of the Kopet Dagh Mountains for a Near Threatened Avian Scavenger, Avian Biology Research, 14(1), PP. 18–26.
https://doi.org/10.1177/ 1758155920962750.
Smith, A.B. & Santos, M.J., 2020,
Testing the Ability of Species Distribution Models to Infer Variable Importance, Ecography, 43(12), PP. 1801–1813.
https://doi.org/10.1111/ ecog.05317.
Smith, R.L. & Lusseau, D., 2022,
Modelling Habitat Suitability for a Potential Flagship Species, the Hooded Capuchin, of the Paraguayan Upper Paraná Atlantic Forest, Ecological Solutions and Evidence, 3(3), PP. 1–13.
https://doi.org/10.1002/2688-8319.12146.
Tittensor, D.P., Walpole, M., Hill, S.L.L., Boyce, D.G., Britten, G.L., Burgess, N.D., Butchart, S.H.M., Leadley, P.W., Regan, E.C., Alkemade, R., Baumung, R., Bellard, C., Bouwman, L., Bowles-newark, N.J., Chenery, A. M. & Cheung, W.W.L., 2014,
A Mid-Term Analysis of Progress toward International Biodiversity Targets, Science, 346(6206), PP. 241–244.
https://doi.org/ 10.1126/science.1257484.
Valkenborg, D., Rousseau, A.J., Geubbelmans, M. & Burzykowski, T., 2023,
Support Vector Machines, American Journal of Orthodontics and Dentofacial Orthopedics, 164(5), PP. 754–757.
https://doi.org/10.1016/ j.ajodo.2023.08.003.
Van Rooyen, J., 2009, Habitat and Seasonal Effects on the Nutrient Status of Selected Roan (Hippotragus Equinus) and Sable Antelope (Hippotragus Niger) Populations in South Africa, Master Thesis, University of Pretoria, (South Africa).
Villero, D., Pla, M., Camps, D., Ruiz-Olmo, J. & Brotons, L., 2017,
Integrating Species Distribution Modelling into Decision-Making to Inform Conservation Actions, Biodiversity and Conservation, 26(2), PP. 251–271.
https://doi.org/10.1007/s10531-016-1243-2.
Waltert, M., Meyer, B. & Kiffner, C., 2009,
Habitat Availability, Hunting or Poaching: What Affects Distribution and Density of Large Mammals in Western Tanzanian Woodlands?, African Journal of Ecology, 47(4), PP. 737–746.
https://doi.org/10.1111/ j.1365-2028.2009.01080.x.
Wieringa, J.G., Carstens, B.C. & Gibbs, H.L., 2021,
Predicting Migration Routes for Three Species of Migratory Bats Using Species Distribution Models, PeerJ, 9, P. e11177.
https://doi.org/10.1111/jav.01476.
Williams, H.M., Willemoes, M. & Thorup, K., 2017, A Temporally Explicit Species Distribution Model for a Long Distance Avian Migrant, the Common Cuckoo, Journal of Avian Biology, 48(12), PP. 1624–1636.
Zizka, A., Silvestro, D., Andermann, T., Azevedo, J., Duarte Ritter, C., Edler, D., Farooq, H., Herdean, A., Ariza, M., Scharn, R., Svantesson, S., Wengström, N., Zizka, V. & Antonelli, A., 2019,
CoordinateCleaner: Standardized Cleaning of Occurrence Records from Biological Collection Databases, Methods in Ecology and Evolution, 10(5), P. 744–751.
https://doi.org/ 10.1111/2041-210X.13152.
Zurell, D., Franklin, J., König, C., Bouchet, P.J., Dormann, C.F., Elith, J., Fandos, G., Feng, X., Guillera-Arroita, G., Guisan, A., Lahoz-Monfort, J.J., Leitão, P.J., Park, D.S., Peterson, A.T., Rapacciuolo, G., Schmatz, D.R., Schröder, B., Serra-Diaz, J.M., Thuiller, W. & Merow, C., 2020,
A Standard Protocol for Reporting Species Distribution Models, Ecography, 43(9), PP. 1261–1277.
https://doi.org/10.1111/ecog.04960.
Zurell, D., Zimmermann, N.E. & Brun, P., 2024,
The Niche through Time: Considering Phenology and Demographic Stages in Plant Distribution Models, Journal of Ecology.
https://doi.org/10.1111/1365-2745.14361.