تشخیص تغییرات در داده‌های سنجش از دور با استفاده از شبکۀ توجه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی کامپیوتر، گروه کامپیوتر، دانشکدۀ مهندسی، دانشگاه آزاد اسلامی واحد تهران مرکزی، تهران، ایران

2 استادیار گروه کامپیوتر،گروه کامپیوتر، دانشکدۀ مهندسی، دانشگاه آزاد اسلامی واحد تهران مرکزی، تهران، ایران

چکیده

سابقه و هدف: تشخیص تغییرات، در داده‌های سنجش از دور، وظیفه‌ای بسیار مهم در علوم محیط‌زیست، مدیریت منابع طبیعی، برنامه‌ریزی شهری و مدیریت بحران‌هاست. با وجود پیشرفت‌های اخیر در این زمینه، بسیاری از روش‌های موجود صرفاً به چالش‌های خاصی می‌پردازند و قادر به دادن راه‌حلی جامع، برای انواع متفاوت داده‌ها و کاربردها نیستند. این محدودیت‌ها شامل ناتوانی در مدیریت داده‌های چندطیفی، فراطیفی و راداری، و نیز ناتوانی در بیان نتایج دقیق و سریع با استفاده از پردازش موازی و بهینه‌سازی منابع پردازشی می‌شود. علاوه‌براین، روش‌های فعلی اغلب به تشخیص تغییرات باینری محدود می‌شوند و قادر به شناسایی دقیق نوع ویژگی‌های تغییریافته نیستند. بنابراین هدف اصلی این تحقیق توسعۀ روشی نوآورانه و جامع برای تشخیص تغییرات است که بتواند این محدودیت‌ها را برطرف کند و در دنیای واقعی، کاربردهای مؤثری داشته باشد.
مواد و روش‌ها: در این مطالعه، روش جدیدی مبتنی‌بر ترکیب شبکۀ ترانسفورمر و مدل توجه خودکار مطرح می‌کنیم که قادر به پردازش و تحلیل داده‌های سنجش از دور، با دقت و کارآیی بالاست. این روش از داده‌های چندطیفی، فراطیفی و راداری بهره می‌برد که از ماهواره‌های سنتینل‌ 2، QuickBird و TerraSAR-X به دست آمده‌اند. این داده‌ها در بازه‌های زمانی متفاوتی جمع‌آوری شده و شامل اطلاعات گوناگون، ازجمله تغییرات پوشش گیاهی، کاربری زمین و تغییرات ساختاری‌اند. روش پیشنهادی از تکنیک‌های ادغام ویژگی‌ها بهره می‌برد که با استفاده از لایه‌های کانولوشن و ترانسفورمر، اطلاعات موجود در داده‌ها را ترکیب می‌کند و دقت تشخیص تغییرات را افزایش می‌دهد. علاوه‌براین استفاده از مکانیسم توجه فضایی به شناسایی روابط مکانی بین ویژگی‌ها کمک می‌کند و با تمرکز بر نواحی کلیدی، دقت تشخیص تغییرات را بهبود می‌بخشد. شبکۀ مبتنی‌بر ترانسفورمر که برای تعیین شباهت توسعه یافته است، با مکانیسم‌های توجه خودکار تقویت شده که امکان دریافت روابط پیچیدۀ بین ویژگی‌ها را در دنباله‌های زمانی فراهم می‌کند. این ویژگی، به‌ویژه برای تشخیص تغییرات جزئی که ممکن است در سایر روش‌ها نادیده گرفته شوند، اهمیت دارد. در بستر عملیاتی، روش پیشنهادی روی سیستمی با کارآیی بالا، شامل یک CPU 24 هسته‌ای Xeon E5-2697 v2، 28 گیگابایت حافظه، دیسک SSD با ظرفیت 200 گیگابایت و یک کارت گرافیک RTX 2080 Ti با 11 گیگابایت RAM و CUDA 11 اجرا و ارزیابی شد.
نتایج و بحث: نتایج این تحقیق برتری روش پیشنهادی را در مقایسه با روش‌های موجود نشان می‌دهند. ارزیابی‌ها براساس معیارهای دقت، بازخوانی، F1-score، دقت کلی (OA) و هم‌پوشانی متقاطع (IoU) انجام شد. این روش توانست، در تمامی این معیارها، عملکردی بهتر از روش‌های دیگر نشان دهد. به‌طورخاص دقت کلی افزایش چشمگیری یافت و در برخی مجموعه داده‌ها، به بیش از 95% رسید. این نتایج حاکی از آن است که روش پیشنهادی نه‌تنها قادر به تشخیص دقیق تغییرات باینری است بلکه می‌تواند نوع ویژگی‌های تغییریافته را نیز با دقت بالا شناسایی کند. این قابلیت‌ها به‌دلیل استفاده از تکنیک‌های پیشرفتۀ یادگیری عمیق و پردازش موازی به دست آمده‌اند. همچنین استفاده از چارچوب SoFRB باعث بهبود کارآیی روش پیشنهادی شده و امکان پردازش داده‌های حجیم را، در زمان کمتر، فراهم کرده است. تحلیل‌های ما بیان می‌کند که روش پیشنهادی می‌تواند، با مجموعه داده‌های متفاوت، انطباق بالایی نشان دهد و در شرایط گوناگون کارکرد مؤثری داشته باشد. به‌علاوه، این روش می‌تواند ابزار کارآمدی در زمینه‌های متفاوت، ازجمله نظارت بر محیط‌زیست، برنامه‌ریزی شهری، کشاورزی دقیق و مدیریت بحران‌ها باشد.
نتیجه‌گیری: روش پیشنهادی ترکیبی از تکنیک‌های مدرن یادگیری عمیق و پردازش موازی است که دقت و کارآیی تشخیص تغییرات در داده‌های سنجش از دور را بهبود چشمگیری بخشیده است. نتایج این تحقیق نشان می‌دهد که روش پیشنهادی نه‌تنها در شرایط آزمایشگاهی بلکه در کاربردهای عملی نیز مورد ‌اعتماد است. به‌طورخاص این روش می‌تواند در نظارت بر تغییرات محیط‌زیست، شناسایی تغییرات در زیرساخت‌های شهری و مدیریت بحران‌های طبیعی و انسانی، نقش مؤثری داشته باشد. این نتایج نویدبخش کاربردهای گسترده این روش در حوزه‌های گوناگون است. همچنین تحقیقات آینده می‌تواند شامل بهبودهای بیشتری در زمینه‌های گوناگون، مانند بهینه‌سازی مدل، استفاده از داده‌های بیشتر و متنوع‌تر و بررسی تأثیر استفاده از تکنیک‌های جدیدتر یادگیری عمیق و پردازش موازی باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Change Detection in Remote Sensing Data Using Attention Network

نویسندگان [English]

  • Roohollah Enayati 1
  • Reza Ravanmehr 2
  • Vahe Aghazarian 2
1 Ph.D. Student, Dep. of Computer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
2 Assistant Prof., Dep. of Computer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

Introduction: Detecting changes in remote sensing data is a critical task in environmental sciences, natural resource management, urban planning, and disaster management. Despite recent advancements in this field, many existing methods only address specific challenges and are unable to provide a comprehensive solution for various types of data and applications. These limitations include the inability to handle multispectral, hyperspectral, and radar data and the lack of capability to deliver accurate and timely results using parallel processing and optimized computing resources. Additionally, current methods are often confined to binary change detection and cannot accurately identify the specific types of changes. Therefore, the primary aim of this research is to develop an innovative and comprehensive change detection method that can overcome these limitations and be effectively used in real-world applications.
Materials and Methods: In this study, we propose a novel approach based on the combination of a transformer network and an automated attention model, capable of processing and analyzing remote sensing data with high accuracy and efficiency. This method utilizes multispectral, hyperspectral, and radar data obtained from Sentinel-2, QuickBird, and TerraSAR-X satellites. These data are collected over different time periods and include diverse information such as vegetation changes, land use, and structural changes. The proposed method employs feature fusion techniques using convolutional and transformer layers to integrate information from the data, thereby enhancing change detection accuracy. Additionally, the use of spatial attention mechanisms helps identify spatial relationships between features, focusing on key areas to improve change detection accuracy. The transformer-based network, developed to determine similarity, is enhanced with automated attention mechanisms that capture complex relationships between features over temporal sequences. This capability is especially important for detecting subtle changes that may be overlooked by other methods. For operational implementation, the proposed method was deployed and evaluated on a high-performance system, including a 24-core Xeon E5-2697 v2 CPU, 28 GB of memory, a 200 GB SSD, and a powerful RTX 2080 Ti graphics card with 11 GB of RAM and CUDA 11.
Results and Discussion: The results obtained from this research indicate the superiority of the proposed method compared to existing methods. Evaluations were conducted using metrics such as Precision, Recall, F1-score, Overall Accuracy (OA), and Intersection over Union (IoU). The proposed method outperformed other methods across all these metrics. Notably, overall accuracy (OA) increased significantly, reaching over 95% on some datasets. These results indicate that the proposed method can not only accurately detect binary changes but also identify the types of changed features with high precision. These capabilities are achieved through the use of advanced deep learning techniques and parallel processing. Moreover, the implementation of the SoFRB(Enayati et al. 2023) framework has enhanced the efficiency of the proposed method, enabling the processing of large volumes of data in less time. Our analysis demonstrates that the proposed method has high adaptability with different datasets and can effectively operate under various conditions. Furthermore, this method can serve as an efficient tool for various applications, including environmental monitoring, urban planning, precision agriculture, and disaster management.
Conclusion: The proposed method integrates modern deep learning techniques and parallel processing to significantly improve the accuracy and efficiency of change detection in remote sensing data. The findings of this study show that the proposed method is reliable not only in experimental settings but also in practical applications. Specifically, this method can effectively monitor environmental changes, detect alterations in urban infrastructures, and manage natural and human-induced disasters. These results promise widespread applications of this method in various fields. Future research could include further improvements in different areas, such as model optimization, the use of more diverse and extensive datasets, and the exploration of the impact of newer deep learning and parallel processing techniques.

کلیدواژه‌ها [English]

  • Change detection
  • convolutional neural network
  • Feature fusion
  • Remote sensing
  • Transformer
Afaq, Y. & Manocha, A., 2021, Analysis on Change Detection Techniques for Remote Sensing Applications: A Review, Ecological Informatics, 63, P. 101310. https://doi.org/ 10.1016/j.ecoinf.2021.101310.
Aleissaee, A.A., Kumar, A., Anwer, R.M., Khan, S., Cholakkal, H., Xia, G.-S. & Khan, F.S., 2023, Transformers in Remote Sensing: A Survey, Remote Sensing, 15(7), P. 1860. https://doi.org/10.3390/rs15071860.
Asokan, A. & Anitha, J., 2019, Change Detection Techniques for Remote Sensing Applications: A Survey, Earth Science Informatics, 12, PP. 143–160. https://doi.org/ 10.1007/s12145-019-00380-5.
Bai, T., Wang, L., Yin, D., Sun, K., Chen, Y., Li, W. & Li, D., 2023, Deep Learning for Change Detection in Remote Sensing: A Review, Geo-Spatial Information Science, 26(3), PP. 262–288. https://doi.org/10.1080/ 10095020.2022.2085633.
Boccardo, P. & Giulio Tonolo, F., 2015, Remote Sensing Role in Emergency Mapping for Disaster Response, In: Engineering Geology for Society and Territory-Volume 5, Urban Geology, Sustainable Planning and Landscape Exploitation. [place unknown], Springer, PP. 17–24. https://doi.org/10.1007/ 978-3-319-09048-1_3.
Boulila, W., Ghandorh, H., Masood, S., Alzahem, A., Koubaa, A., Ahmed, F., Khan, Z. & Ahmad, J., 2024, A Transformer-Based Approach Empowered by a Self-Attention Technique for Semantic Segmentation in Remote Sensing, Heliyon, 10(8). https://doi.org/10.1016/j.heliyon.2024. e29396.
Chen, H. & Shi, Z., 2020, A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection, Remote Sensing, 12(10), P. 1662. https://doi.org/10.3390/rs12101662.
Chen, L., Zhang, D., Li, P. & Lv, P., 2020, Change Detection of Remote Sensing Images Based on Attention Mechanism, Computational Intelligence and Neuroscience, 2020(1), P. 6430627. https://doi.org/10.1155/ 2020/6430627.
Chen, H., Qi, Z. & Shi, Z., 2021, Remote Sensing Image Change Detection with Transformers, IEEE Transactions on Geoscience and Remote Sensing, 60, PP. 1–14. https://doi.org/10.1109/TGRS.2021.3095166.
Chen, J., Chen, S., Fu, R., Li, D., Jiang, H., Wang, C., Peng, Y., Jia, K. & Hicks, B.J., 2022, Remote Sensing Big Data for Water Environment Monitoring: Current Status, Challenges, and Future Prospects, Earth’s Future, 10(2), P. e2021EF002289.
     https://doi.org/ 10.1029/2021EF002289.
Chi, M., Plaza, A., Benediktsson, J.A., Sun, Z., Shen, J. & Zhu, Y., 2016, Big Data for Remote Sensing: Challenges and Opportunities, Proceedings of the IEEE, 104(11), PP. 2207–2219. https://doi.org/ 10.1109/JPROC.2016.2598228.
Enayati, R., Ravanmehr, R. & Aghazarian, V., 2023, A Service-Oriented Framework for Remote Sensing Big Data Processing, Earth Science Informatics, 16(1), PP. 591–616. https://doi.org/10.1007/s12145-022-00900-w.
Fang, B., Pan, L. & Kou, R., 2019, Dual Learning-Based Siamese Framework for Change Detection Using Bi-Temporal VHR Optical Remote Sensing Images, Remote Sensing, 11(11), P. 1292. https://doi.org/10.3390/rs11111292.
Fingas, M., 2019, Remote Sensing for Marine Management, In: World Seas: An Environmental Evaluation, [place unknown], Elsevier, PP. 103–119. https://doi.org/10.1016/ B978-0-12-805052-1.00005-X.
Gong, M., Niu, X., Zhang, P. & Li, Z., 2017, Generative Adversarial Networks for Change Detection in Multispectral Imagery, IEEE Geoscience and Remote Sensing Letters, 14(12), PP.2310–2314. https://doi.org/10.1109/ LGRS.2017.2762694.
Huang, Y., Chen, Z., Tao, Y., Huang, X. & Gu, X., 2018, Agricultural Remote Sensing Big Data: Management and Applications, Journal of Integrative Agriculture, 17(9), PP. 1915–1931. https://doi.org/10.1016/S2095-3119(17)61859-8.
Ismail, A., Bagula, B.A. & Tuyishimire, E., 2018, Internet-of-Things in Motion: A Uav Coalition Model for Remote Sensing in Smart Cities, Sensors, 18(7), P. 2184. https://doi.org/10.3390/s18072184.
Khan, S.H., He, X., Porikli, F. & Bennamoun, M., 2017, Forest Change Detection in Incomplete Satellite Images with Deep Neural Networks, IEEE Transactions on Geoscience and Remote Sensing, 55(9), PP. 5407–5423. https://doi.org/10.1109/TGRS.2017.2707528.
Lei, T., Zhang, Y., Lv, Z., Li, S., Liu, S. & Nandi, A.K., 2019, Landslide Inventory Mapping from Bitemporal Images Using Deep Convolutional Neural Networks, IEEE Geoscience and Remote Sensing Letters, 16(6), PP. 982–986. https://doi.org/ 10.1109/LGRS.2018.2889307.
Li, K., Wan, G., Cheng, G., Meng, L. & Han, J., 2020, Object Detection in Optical Remote Sensing Images: A Survey and a New Benchmark, ISPRS Journal of Photogrammetry and Remote Sensing, 159, pp. 296–307. https://doi.org/10.1016/j.isprsjprs. 2019.11.023.
Li, X., Du, Z., Huang, Y. & Tan, Z., 2021a, A Deep Translation (GAN) Based Change Detection Network for Optical and SAR Remote Sensing Images, ISPRS Journal of Photogrammetry and Remote Sensing, 179, PP. 14–34. https://doi.org/10.1016/j.isprsjprs. 2021.07.007.
Li, Y., Ma, J. & Zhang, Y., 2021b, Image Retrieval from Remote Sensing Big Data: A Survey, Information Fusion, 67, PP. 94–115. https://doi.org/10.1016/j.inffus.2020.10.008.
Li, Q., Yan, D. & Wu, W., 2021c, Remote Sensing Image Scene Classification Based on Global Self-Attention Module, Remote Sensing, 13(22), P. 4542. https://doi.org/ 10.3390/rs13224542.
Li, J., Zhu, S., Gao, Y., Zhang, G. & Xu, Y., 2022a, Change Detection for High-Resolution Remote Sensing Images Based on a Multi-Scale Attention Siamese Network, Remote Sensing, 14(14), P. 3464. https://doi.org/10.3390/rs14143464.
Li, H., Zhu, F., Zheng, X., Liu, M. & Chen, G., 2022b, MSCDUNet: A Deep Learning Framework for Built-up Area Change Detection Integrating Multispectral, SAR, and VHR Data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, PP. 5163–5176. https://doi.org/10.1109/JSTARS.2022.3181155.
Liu, P., 2015, A Survey of Remote-Sensing Big Data, Frontiers in Environmental Science, 3, P. 45. https://doi.org/10.3389/fenvs.2015.00045.
Lu, M., Pebesma, E., Sanchez, A. & Verbesselt, J., 2016, Spatio-Temporal Change Detection from Multidimensional Arrays: Detecting Deforestation from MODIS Time Series, ISPRS Journal of Photogrammetry and Remote Sensing, 117, PP. 227–236. https://doi.org/10.1016/j.isprsjprs.2016.03.007.
Lv, Z., Zhong, P., Wang, W., You, Z. & Falco, N., 2023, Multi-Scale Attention Network Guided with Change Gradient Image for Land Cover Change Detection Using Remote Sensing Images, IEEE Geoscience and Remote Sensing Letters. https://doi.org/ 10.1109/LGRS.2023.3267879.
Pande, C.B. & Moharir, K.N., 2023, Application of Hyperspectral Remote Sensing Role in Precision Farming and Sustainable Agriculture under Climate Change: A Review, Climate Change Impacts on Natural Resources, Ecosystems and Agricultural Systems, PP. 503–520. https://doi.org/ 10.1007/978-3-031-19059-9_21.
Papadomanolaki, M., Verma, S., Vakalopoulou, M., Gupta, S. & Karantzalos, K., 2019, Detecting Urban Changes with Recurrent Neural Networks from Multitemporal Sentinel-2 Data, In: IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. [Place Unknown], IEEE, PP. 214–217. https://doi.org/10.1109/ IGARSS.2019.8900330.
Peng. D., Bruzzone, L., Zhang, Y., Guan, H., Ding, H. & Huang, X., 2020, SemiCDNet: A Semisupervised Convolutional Neural Network for Change Detection in High Resolution Remote-Sensing Images, IEEE Transactions on Geoscience and Remote Sensing, 59(7), PP. 5891–5906. https://doi.org/ 10.1109/TGRS.2020.3011913.
Rathee, G., Kerrache, C.A., Calafate, C.T., Bilal, M. & Song, H., 2024, SMART: A Secure Remote Sensing Solution for Smart Cities’ Urban Areas, IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2024.3362377.
Sefrin, O., Riese, F.M. & Keller, S., 2020, Deep Learning for Land Cover Change Detection, Remote Sensing, 13(1), P. 78. https://doi.org/10.3390/rs13010078.
Shafique, A., Cao, G., Khan, Z., Asad, M. & Aslam, M., 2022, Deep Learning-Based Change Detection in Remote Sensing Images: A Review, Remote Sensing, 14(4), P. 871. https://doi.org/10.3390/rs14040871.
Shen, Q., Huang, J., Wang, M., Tao, S., Yang, R. & Zhang, X., 2022, Semantic Feature-Constrained Multitask Siamese Network for Building Change Detection in High-Spatial-Resolution Remote Sensing Imagery, ISPRS Journal of Photogrammetry and Remote Sensing, 189, PP. 78–94. https://doi.org/10.1016/j.isprsjprs.2022.05.001.
Shi, W., Zhang, M., Zhang, R., Chen, S. & Zhan, Z., 2020, Change Detection Based on Artificial Intelligence: State-of-the-Art and Challenges, Remote Sensing, 12(10), P. 1688. https://doi.org/10.3390/rs12101688.
Shi, Q., Liu, M., Li, S., Liu, X., Wang, F. & Zhang, L., 2021, A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing Change Detection, IEEE Transactions on Geoscience and Remote Sensing, 60, PP. 1–16. https://doi.org/10.1109/ TGRS.2021.3085870.
Temenos, A., Temenos, N., Tzortzis, I.N., Rallis, I., Doulamis, A. & Doulamis, N., 2024, C2A-DC: A Context-Aware Adaptive Data Cube Framework for Environmental Monitoring and Climate Change Crisis Management, Remote Sensing Applications: Society and Environment, 34, P. 101171. https://doi.org/10.1016/j.rsase.2024.101171.
Toth, C. & Jóźków, G., 2016, Remote Sensing Platforms and Sensors: A Survey, ISPRS Journal of Photogrammetry and Remote Sensing, 115, PP. 22–36. https://doi.org/ 10.1016/j.isprsjprs.2015.10.004.
Vance, T.C., Huang, T. & Butler, K.A., 2024, Big Data in Earth Science: Emerging Practice and Promise, Science, 383(6688), P. eadh9607. https://doi.org/10.1126/science. adh9607.
Viana, C.M., Oliveira, S., Oliveira, S.C. & Rocha, J., 2019, Land Use/Land Cover Change Detection and Urban Sprawl Analysis, In: Spatial Modeling in GIS and R for Earth and Environmental Sciences, [Place Unknown], Elsevier, PP. 621–651. https://doi.org/10.1016/B978-0-12-815226-3.00029-6.
Wang, R. & Gamon, J.A., 2019, Remote Sensing of Terrestrial Plant Biodiversity, Remote Sensing of Environment, 231, P. 111218. https://doi.org/10.1016/j.rse.2019.111218.
Wang, Z., Peng, C., Zhang, Y., Wang, N. & Luo, L., 2021, Fully Convolutional Siamese Networks Based Change Detection for Optical Aerial Images with Focal Contrastive Loss, Neurocomputing, 457, PP. 155–167. https://doi.org/10.1016/j.neucom.2021.06.059.
Wang, S., Han, W., Huang, X., Zhang, X., Wang, L. & Li, J., 2024, Trustworthy Remote Sensing Interpretation: Concepts, Technologies, and Applications, ISPRS Journal of Photogrammetry and Remote Sensing, 209, PP. 150–172. https://doi.org/ 10.1016/j.isprsjprs.2024.02.003.
Wu, Y., Li, J., Yuan, Y., Qin, A., Miao, Q.-G. & Gong, M.-G., 2021, Commonality Autoencoder: Learning Common Features for Change Detection from Heterogeneous Images, IEEE Transactions on Neural Networks and Learning Systems, 33(9), PP. 4257–4270. https://doi.org/10.1109/TNNLS.2021.3056238.
Yang, J., Gong, P., Fu, R., Zhang, M., Chen, J., Liang, S., Xu, B., Shi, J. & Dickinson, R., 2013, The Role of Satellite Remote Sensing in Climate Change Studies, Nature Climate Change, 3(10), PP. 875–883. https://doi.org/ 10.1038/nclimate1908.
Yang, L., Chen, Y., Song, S., Li, F. & Huang, G., 2021, Deep Siamese Networks Based Change Detection with Remote Sensing Images, Remote Sensing, 13(17), P. 3394. https://doi.org/10.3390/rs13173394.
Yusufovich, G.Y. & Yokubov, Sh.Sh.o., 2023, The Use of Remote Sensing Technologies in the Design of Maps of Agricultural Land, Texas Journal of Agriculture and Biological Sciences, 23, PP. 17–21.
Zhan, Y., Fu, K., Yan, M., Sun, X., Wang, H. & Qiu, X., 2017, Change Detection Based on Deep Siamese Convolutional Network for Optical Aerial Images, IEEE Geoscience and Remote Sensing Letters, 14(10), PP. 1845–1849. https://doi.org/10.1109/LGRS.2017.2738149.
Zhang, J., Huang, Y., Pu, R., Gonzalez-Moreno, P., Yuan, L., Wu, K. & Huang, W., 2019, Monitoring Plant Diseases and Pests through Remote Sensing Technology: A Review, Computers and Electronics in Agriculture, 165, P. 104943. https://doi.org/ 10.1016/j.compag.2019.104943.
Zhang, H., Lin, M., Yang, G. & Zhang, L., 2021, ESCNet: An End-to-End Superpixel-Enhanced Change Detection Network for Very-High-Resolution Remote Sensing Images, IEEE Transactions on Neural Networks and Learning Systems.
     https://doi.org/10.1109/TNNLS.2021.3089332.
Zhang, M., Liu, Z., Feng, J., Liu, L. & Jiao, L., 2023, Remote Sensing Image Change Detection Based on Deep Multi-Scale Multi-Attention Siamese Transformer Network, Remote Sensing, 15(3), P. 842. https://doi.org/10.3390/rs15030842.
Zheng, Z., Wan, Y., Zhang, Y., Xiang, S., Peng, D. & Zhang, B., 2021, CLNet: Cross-Layer Convolutional Neural Network for Change Detection in Optical Remote Sensing Imagery, ISPRS Journal of Photogrammetry and Remote Sensing, 175, PP. 247–267. https://doi.org/10.1016/j.isprsjprs.2021.03.005.
Zhu, Q., Guo, X., Deng, W., Shi, S., Guan, Q., Zhong, Y., Zhang, L. & Li, D., 2022, Land-Use/Land-Cover Change Detection Based on a Siamese Global Learning Framework for High Spatial Resolution Remote Sensing Imagery, ISPRS Journal of Photogrammetry and Remote Sensing, 184, PP. 63–78. https://doi.org/10.1016/j.isprsjprs. 2021.12.005.
Zhu, S., Song, Y., Zhang, Y. & Zhang, Y., 2023, ECFNet: A Siamese Network with Fewer FPs and Fewer FNs for Change Detection of Remote-Sensing Images, IEEE Geoscience and Remote Sensing Letters, 20, PP. 1–5. https://doi.org/10.1109/LGRS.2023.3238553.
Zhu, Q., Guo, X., Li, Z. & Li, D., 2024, A Review of Multi-Class Change Detection for Satellite Remote Sensing Imagery, Geo-spatial Information Science, 27(1), PP. 1–15. https://doi.org/10.1080/10095020.2022.2128902.