تحلیل تغییرات زمانی‌ـ مکانی شدت، تداوم، فراوانی و گسترة خشکسالی با استفاده از داده‌های سنجش از دور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری سنجش از دور، دانشگاه تهران

2 دانشیار گروه سنجش از دور، دانشکدة جغرافیا، دانشگاه تهران

3 استادیار گروه سنجش از دور، دانشکدة جغرافیا، دانشگاه تهران

چکیده

خشکسالی از مهم‌ترین بلایای طبیعی کشور است که اثرات مخرب زیست‌محیطی و اقتصادی فراوانی دارد. بیشتر مطالعات انجام‌شده به شدت خشکسالی پرداخته‌اند و معمولاً سایر ویژگی‌های آن بررسی نشده است. در این تحقیق، اولین‌بار، قابلیت شاخص‌های هواشناسی و داده‌های ماهواره‌ای با یکدیگر ادغام شده و از آن برای مطالعة تمامی ویژگی‌های خشکسالی، در دو حوزة داخلی و ساحلی کشور، استفاده شده است. بدین‌منظور، شاخص SPI با استفاده از تصاویر ماهواره‌ای بارش TRMM محاسبه شده و سپس مشخصه‌های خشکسالی مانند شدت، تداوم، بزرگی و گسترة خشکسالی، به‌صورت مکانی، در سطح حوزه مطالعه شد. نتایج نشان‌دهندة همبستگی کلی 0.94 بین SPI محاسبه‌شده از تصویر و داده‌های ایستگاهی بوده است. حداکثر شدت خشکسالی در منطقة مورد مطالعه برابر با 4.19- بوده که در آذر سال 1389 اتفاق افتاده است. علاوه‌براین، فراوانی وقوع خشکسالی‌های فرین، در دو مقیاس زمانی شش و دوازده‌ماهه، در حوزة داخلی بیشتر از حوزة ساحلی بوده است. در بازة مورد مطالعه، در مقیاس زمانی شش‌ماهه، 60% از رویدادهای خشکسالی حوزة بزرگی خفیف‌تر از 18.3- داشته‌اند. نتایج نشان داد، با استفاده از تصاویر ماهواره‌ای، به‌خوبی می‌توان به مشخصة گسترة خشکسالی دست یافت؛ درحالی‌که با استفاده از سایر روش‌ها قابل محاسبه نیست. علاوه‌براین، با به‌کارگیری تصاویر ماهواره‌ای، می‌توان مشخصه‌های خشکسالی را در سطح حوزه، به‌صورت مکانی، مطالعه کرد و چنین کاری با روش‌های سنتی امکان‌پذیر نیست. نتایج تحقیق مؤید مزیت به‌کارگیری داده‌های بارش ماهواره‌ای در مطالعة خشکسالی بوده است. 

کلیدواژه‌ها


عنوان مقاله [English]

Spatiotemporal Assessment of the Intensity, Duration, Frequency and Magnitude of the Drought by Using Remote Sensing Data

نویسندگان [English]

  • Maedeh Behifar 1
  • a.a Kakroodi 2
  • Majid Kiavarz 3
  • Farshad Amiraslani 3
1 Ph.D. Student, Dep. of Remote Sensing, Faculty of Geography, University of Tehran
2 Associate Prof., Dep. of Remote Sensing, Faculty of Geography, University of Tehran
3 Assistant Prof., Dep. of Remote Sensing, Faculty of Geography, University of Tehran
چکیده [English]

Drought is one of the most important natural disasters in the country, with devastating environmental and economic effects. Most drought studies have focused on drought severity and other drought characteristics have not been usually investigated. In this research, for the first time, the capability of meteorological drought indices and satellite data are combined and applied to study drought in inland and coastal basins. For this purpose, the SPI index was calculated by using TRMM satellite precipitation products and then, the drought characteristics such as severity, duration, magnitude, and extent were spatially studied. The results showed that the correlation coefficient between the SPI calculated from the image and the station data was 0.94. The maximum intensity of drought in the study area was -4.19 which occurred in December 2010. Furthermore, the frequency of extreme droughts in 6- and 12-months timescales was higher in the inland area compared with the coastal area. Moreover, in the six-month timescales, 60 percent of drought events had a magnitude of -18.3 or less. The results showed that it is possible to obtain the extent of drought by using satellite imagery which cannot be calculated by other methods. Besides, by using satellite images, drought characteristics could be studied spatially at the basin scale, which is not possible by traditional methods. The results showed the advantage of using satellite precipitation images in the drought study

کلیدواژه‌ها [English]

  • Drought
  • Drought extent
  • Remote Sensing
  • Standardized Precipitation Index
بداق جمالی، ج.، جوانمرد، س.، تاجبخش، س.، 1398، برآورد نوع و مقدار بارش با استفاده از سنجندة TMI ماهوارة TRMM، پژوهش‌های اقلیم‌شناسی، سال دهم، شمارة 37، صص. 62-31.
بذرافشان، ج.، 1381، مطالعة تطبیقی برخی شاخص‌های خشکسالی هواشناسی در چند نمونة اقلیمی ایران، پایان‌نامة کارشناسی ارشد، دانشکدة کشاورزی، دانشگاه تهران.
بذرافشان، ج.، حجابی، س.، 1396، خشکسالی روش‌های پایش، انتشارات دانشگاه تهران.
بی‌همتا، آ.، گهرنژاد، ح.، معظمی، ص.، 1397، بررسی داده‌های بارش ماهواره‌های GPM و RMM در مقیاس‌های روزانه، ماهیانه و فصلی در شهر تهران، سنجش از دور و GIS ایران، سال دهم،‌ شمارة 38، صص. 60-45.
تبوزاده، ش.، زارعی، ح.، بذرافشان، ا.، 1394، تحلیل شدت، مدت، فراوانی و گسترة خشکسالی هواشناسی در حوضة آبریز بختگان، علوم و مهندسی آبیاری، دورة 38، شمارة 4، صص. 123-109.
دیهیم‌فرد، ر.، عینی نرگسه، ح.، حقیقت، م.، 1393، پهنه‌بندی وقوع خشکسالی در استان فارس تحت تأثیر شرایط تغییر اقلیم با استفاده از شاخص بارش استاندارد، بوم‌شناسی کشاورزی، دورة هفتم، شمارة 4، صص. 546-528.
صباغیان، ر.، شریفی، م.، 1388، استفاده از مدل‌های اتفاقی در شبیه‌سازی جریان رودخانه و پیش‌بینی دبی متوسط سالانه رودخانه توسط تحلیل سری‌های زمانی، اولین کنفرانس بین‌المللی مدیریت منابع آب، شاهرود، دانشگاه صنعتی شاهرود.
عابدی کوپایی، ج.، 1390، پهنه‌بندی خشکسالی استان اصفهان و راهکارهای کاهش اثر کم‌آبی، خشکسالی، زاینده‌رود، راهکارها و چالش‌ها، ادارة کل مدیریت بحران استانداری اصفهان.
غلامی، م.، علی‌بیگی، ا.، 1393، شناسایی روش‌های بومی مدیریت خشکسالی، مطالعة موردی: شهرستان سرپل ذهاب، پژوهش‌های روستایی، دورة پنجم شمارة ۳، صص. 638-611.
محسنی ساروی، م.، صفدری، ع.، ثقفیان، ب.، مهدوی، م.، 1383، تحلیل شدت، مدت، فراوانی و گسترة خشکسالی‌های حوزة کارون به کمک شاخص بارش استاندارد (SPI)، منابع طبیعی ایران، دورة 57، شمارة 4، صص. 620-607.
نصرتی، ک.، آذرنیوند، ح.، 1381، تحلیل منطق‌های شدت مدت دورة بازگشت خشکسالی با استفاده از داده‌های بارندگی (مطالعة موردی: حوضة آبریز اترک)، بیابان، دورة هفتم، شمارة 1، صص. 62-49.
Abramowitz, M. & Stegun, I.A., 1965, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, Vol. 55, Courier Corporation.
Behifar, M.M., Kakroodi, A.A., Kiavarz, M. & Amiraslani, F., 2019, Combination of Meteorological Indices and Satellite Data for Drought Monitoring in Two Different Environments in Iran, 5th International Conference on Sensor Models in Photo-grammetry and Remote Sensing (SMPR, 2019).
 
Dracup, J.A., Lee, K.S. & Paulson Jr., E.G., 1980, On the Definition of Droughts, Water Resources Research, 16(2), PP. 297-302.
Dupigny‐Giroux, L.A., 2001, Towards Characterizing and Planning for Drought In VermontPart I: A Climatological Perspectwe 1, JAWRA Journal of the American Water Resources Association, 37(3), PP. 505-525.
Edwards, D.C., McKee, TB., 1997, characteristics of 20th Century Drought in the United States at Multiple Time Scales (No. AFIT-97-051), Air Force Inst of Tech Wright-Patterson.
Fang, J., Du, J., Xu, W., Shi, P., Li, M. & Ming, X., 2013, Spatial Downscaling of TRMM Precipitation Data Based on the Orographical Effect and Meteorological Conditions in a Mountainous Area, Advances in Water Resources, 61, PP. 42-50.
Fleming, K., Awange, J., Kuhn, M. & Featherstone, W., 2011, Evaluating the TRMM 3B43 Monthly Precipitation Product Using Gridded Rain-Gauge Data over Australia, Australian Meteorological and Oceanographic Journal, 61.
Ghosh, K.G., 2018, Geo-Statistical Assessment of the Intensity, Duration, Frequency and Trend of Drought over Gangetic West Bengal, Eastern India, In Hydrometeorology, IntechOpen.
Hayes, M., Svoboda, M., Wall, N. & Widhalm, M., 2011, The Lincoln Declaration on Drought Indices: Universal Meteorological Drought Index Recommended, Bulletin of the American Meteorological Society, 92(4), PP. 485-488.
Jiao, W., Tian, C., Chang, Q., Novick, K.A. & Wang, L., 2019, A New Multi-Sensor Integrated Index for Drought Monitoring, Agricultural and forest meteorology, 268, PP. 74-85.
Liu, W.T. & Kogan, F.N., 1996, Monitoring Regional Drought Using the Vegetation Condition Index, International Journal of Remote Sensing, 17(14), PP. 2761-2782.
McKee, T.B., Doesken, N.J. & Kleist, J., 1993, The Relationship of Drought Frequency and Duration to Time Scales, Proceedings of the 8th Conference on Applied Climatology, 17(22), PP. 179-183, Boston, MA: American Meteorological Society.
Meng, J., Li, L., Hao, Z., Wang, J. & Shao, Q., 2014, Suitability of TRMM Satellite Rainfall in Driving a Distributed Hydrological Model in the Source Region of Yellow River, Journal of Hydrology, 509, PP. 320-332.
Mishra, A.K., Desai, V.R. & Singh, V.P., 2007, Drought Forecasting Using a Hybrid Stochastic and Neural Network Model, Journal of Hydrologic Engineering, 12(6), PP. 626-638.
Moradi, H.R., Rajabi, M. & Faragzadeh, M., 2011, Investigation of Meteorological Drought Characteristics in Fars Province, Iran, Catena, 84(1-2), PP. 35-46.
NCDC (National Climatic Data Center), 2007, Billion Dollar U.S. Weather Disasters, [http://lwf.ncdc.noaa.gov/oa/reports/billionz.html], accessed September 22, 2007.
Panu, U.S. & Sharma, T.C., 2002, Challenges in Drought Research: Some Perspectives and Future Directions, Hydrological Sciences Journal, 47(S1), PP. S19-S30.
Park, S., Im, J., Park, S. & Rhee, J., 2017, Drought Monitoring Using High Resolution Soil Moisture through Multi-Sensor Satellite Data Fusion over the Korean Peninsula, Agricultural and Forest Meteorology, 237, PP. 257-269.
Rosenberg, N.J. (Ed.), 1978, North American Droughts, Boulder, CO, Westview Press.
Sandholt, I., Rasmussen, K. & Andersen, J., 2002, A Simple Interpretation of the Surface Temperature/Vegetation Index Space for Assessment of Surface Moisture Status, Remote Sensing of environment, 79(2-3),PP. 213-224.
Santos, C.A.G., Neto, R.M.B., de Araújo Passos, J.S. & da Silva, R.M., 2017, Drought Assessment Using a TRMM-Derived Standardized Precipitation Index for the Upper São Francisco River Basin, Brazil, Environmental Monitoring and Assessment, 189(6), P. 250.
Spinoni, J., Naumann, G., Carrao, H., Barbosa, P. & Vogt, J., 2014, World Drought Frequency, Duration, and Severity for 1951–2010, International Journal of Climatology, 34(8), PP. 2792-2804.
Tang, G., Zeng, Z., Long, D., Guo, X., Yong, B., Zhang, W. & Hong, Y., 2016, Statistical and Hydrological Comparisons between TRMM and GPM Level-3 Products over a Midlatitude Basin: Is Day-1 IMERG a Good Successor for TMPA 3B42V7, Journal of Hydrometeorology, 17(1), PP. 121-137.
Thompson, S., 1999, Hydrology for Water Management, Rotterdam, The Netherlands: AA Balkema Publication.
Wan, Z., Wang, P. & Li, X., 2004, Using MODIS Land Surface Temperature and Normalized Difference Vegetation Index Products for Monitoring Drought in the Southern Great Plains, USA, International Journal of Remote Sensing, 25(1), PP. 61-72.
Wang, Q., Wu, J., Lei, T., He, B., Wu, Z., Liu, M., ... & Liu, D., 2014, Temporal-Spatial Characteristics of Severe Drought Events and their Impact on Agriculture on a Global Scale, Quaternary International, 349, PP. 10-21.
Wilhite, D.A., 1997, Responding to Drought: Common Threads from the Past, Visions for the Future, Journal of the American Water Resources Association, 33(5), PP. 951-959.
Wilhite, D.A., 2000, Preparing for Drought: A Methodology, in Drought: A Global Assessment, Wilhite, D. A. (Ed.s), London, UK: Routledge, Natural Hazards and Disaster Series.
Wilks, D.S., 2011, Statistical Methods in the Atmospheric Sciences, Vol. 100, Academic Press.
World Meteorological Organization, 2012, Standardized Precipitation Index User Guide, (M. Svoboda, M. Hayes and D. Wood), (WMO-No. 1090), Geneva, Switzerland.
Zhang, A. & Jia, G., 2013, Monitoring Meteorological Drought in Semiarid Regions Using Multi-Sensor Microwave Remote Sensing Data, Remote Sensing of Environment, 134, PP. 12-23.
Zhang, Q., Li, J., Singh, V. P. & Bai, Y., 2012, SPI-Based Evaluation of Drought Events in Xinjiang, China, Natural Hazards, 64(1), PP. 481-492.
Zhao, Q., Chen, Q., Jiao, M., Wu, P., Gao, X., Ma, M. & Hong, Y., 2018, The Temporal-Spatial Characteristics of Drought in the Loess Plateau Using the Remote-Sensed TRMM Precipitation Data from 1998 to 2014, Remote Sensing, 10(6), P. 838.