تعیین بهینة باندهای ماهوارة لندست به‌منظور ‌اندازه‌گیری CDOM دریاچه‌ها با استفاده از الگوریتم SVR

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد سنجش از دور، دانشگاه آزاد، واحد تهران جنوب

2 استادیار گروه مهندسی نقشه‌برداری، دانشگاه آزاد، واحد تهران جنوب

چکیده

مادة آلی محلول رنگی (CDOM) مقیاس مهمی در سنجش کیفیت آب است. می‌توان اذعان کرد CDOM نور موجود در لایه‌های آب را کاهش می‌دهد و فعالیت‌های بیولوژیکی فتوسنتز را مختل می‌کند و سرانجام، مانع رشد جمعیت فیتوپلانکتون‌‌هایی می‌شود که برای زنجیرة غذای آبزیان ضروری‌اند. در بیشتر تحقیق‌هایی که تا کنون به انجام رسیده، از طول موج خاصی برای اندازه‌گیری ضریب جذب CDOM استفاده شده است اما، در این تحقیق، امکان استفاده از گسترة‌ وسیعی از باندهای طیف مرئی، برای تعیین مادة آلی محلول رنگی، در طول موج‌‌های 443-254 (254، 260، 350، 375، 400، 412، 440، 443) نانومتر در ماهوارة لندست 8 بررسی شده؛ ضمن آنکه مناسب‌ترین نسبت باند برای اندازه‌گیری مادة آلی محلول، در طول موج‌های قابل‌ اندازه‌گیری، با استفاده از الگوریتم SVR (اجزای این پارامتر بهینه‌سازی شده است) به‌دست آمده است. در پژوهش حاضر، نسبت باندهای Coastal به قرمز (R1/R4)، آبی به قرمز
(R2/R4) و نسبت باندهای سبز به قرمز (R3/R4) برای بازیابی CDOM در نظر گرفته شده است. براساس نتایج و با توجه به ضریب تعیین (71/0=R2) و میزان خطاها ( m161/1MSE=،m-1 077/1RMSE= وm-1 946/0MAE=) می‌توان نتیجه گرفت که استفاده از نسبت باندهای سبز به قرمز در ماهوارة لندست 8 مناسب‌ترین گزینه برای تعیین مادة آلی محلول رنگی است. افزون‌براین، نتایج این تحقیق مشخص کرده‌اند که اندازه‌گیری  CDOMدر طول موج 440 نانومتر می‌تواند شاخص مناسبی برای بررسی کیفیت دریاچه‌ها، براساس غلظت آنها، محسوب شود.

کلیدواژه‌ها


عنوان مقاله [English]

Optimal Band Selection of Landsat-8 Images for Estimation of CDOM of Lakes Using Support Vector Regression

نویسندگان [English]

  • Mohammad Momeni Esfahani 1
  • Amir Shahrokh Amini 2
1 M.Dc. of RS and GIS, Islamic Azad University, South Tehran Branch
2 Associate Prof., Dep. of Surveying Engineering, Islamic Azad University, South Tehran Branch
چکیده [English]

Colored dissolved organic matter (CDOM) is an important measure of water quality. CDOM can reduce the amount of light in water layers, disrupt the biological activity of photosynthesis, and inhibit the growth of phytoplankton populations that are essential for the aquatic food chain. Contrary to conducted research to date, which uses a specific wavelength, in this paper, we first examined the possibility of using visible portion of the spectrum to determine CDOM at 254-443 nm (254, 260, 350, 375, 400, 412, 440, 443 nm) in Landsat 8 . we then selected the most appropriate band ratios to measure CDOM at measurable wavelengths using the SVR algorithm (the parameters of which have been optimized using the genetic algorithm). It is noteworthy that in this study, the ratio of Coastal to red bands (), blue to red (), and the ratio of green to red bands () were considered for CDOM retrieval. Based on the results, considering the coefficient of determination ( = 0.71) and the amount of errors (MSE = 1.161 , RMSE = 1.077  and MAE = 0.946 ), it was concluded that the ratio of green to red bands in Landsat 8 is the most suitable choice for determining the colored dissolved organic matter. Moreover, according to the results from this study, the measurement of CDOM (440) is the most appropriate index for evaluating the quality of lake water resources in terms of their concentrations.

کلیدواژه‌ها [English]

  • Colored dissolved organic matter
  • SVR
  • Landsat 8
  • Water quality measurement
Awad, M. & Khanna, R., 2015, Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers, Apress.
Bergamaschi, B.A., Krabbenhoft, D.P., Aiken, G.R., Patino, E., Rumbold, D.G. & Orem, W.H., 2012, Tidally Driven Export of Dissolved Organic Carbon, Total Mercury, and Methylmercury from a Mangrove-Dominated Estuary, Environmental Science & Technology, 46(3): PP. 1371-1378.
Bowers, D., Evans, D., Thomas, D.N., Ellis, K. & Williams, P.J.le B., 2004, Interpreting the Colour of an Estuary, Estuarine, Coastal and Shelf Science, 59(1), PP. 13-20.
 
Brando, V.E. & Dekker, A.G., 2003, Satellite Hyperspectral Remote Sensing for Estimating Estuarine and Coastal Water Quality, IEEE Transactions on Geoscience and Remote Sensing, 41(6), PP. 1378-1387.
Brando, V.E., Dekker, A.G., Park, Y.J. & Schroeder, T., 2012, Adaptive Semianalytical Inversion of Ocean Color Radiometry in Optically Complex Waters, Applied Optics, 51(15), PP. 2808-2833.
Brezonik, P., Menken, K.D. & Bauer, M., 2005, Landsat-Based Remote Sensing of Lake Water Quality Characteristics, Including Chlorophyll and Colored Dissolved Organic Matter (CDOM), Lake and Reservoir Management, 21(4), PP. 373-382.
Carder, K.L., Chen, F.R., Lee, Z.P., Hawes, S.K. & Kamykowski, D., 1999, Semianalytic ModerateResolution Imaging Spectrometer Algorithms for Chlorophyll a and Absorption with BioOptical Domains Based on NitrateDepletion Temperatures, Journal of Geophysical Research: Oceans104(C3), PP. 5403-5421.
Cristianini, N. & Shawe-Taylor, J., 2000, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods, Cambridge University Press.
D'Sa, E.J. & Miller, R.L., 2003, Bio-Optical Properties in Waters Influenced by the Mississippi River During low Flow Conditions, Remote Sensing of Environment, 84(4), PP. 538-549.
Del Castillo, C.E. & Miller, R.L., 2008, On the Use of Ocean Color Remote Sensing to Measure the Transport of Dissolved Organic Carbon by the Mississippi River Plume, Remote Sensing of Environment, 112(3), PP. 836-844.
Evans, C., Monteith, D.T. & Cooper, D.M., 2005, Long-Term Increases in Surface Water Dissolved Organic Carbon: Observations, Possible Causes and Environmental Impacts, Environmental Pollution, 137(1), PP. 55-71.
Häder, D.-P., Kumar, H.D., Smith, R.C. & Worrest, R.C., 2007, Effects of Solar UV Radiation on Aquatic Ecosystems and Interactions with Climate Change, Photochemical & Photobiological Sciences, 6(3), PP. 267-285.
Herzsprung, P., von Tümpling, W., Hertkorn, N., Harir, M., Büttner, O., Bravidor, J., Friese, K. & Schmitt-Kopplin, P., 2012, Variations of DOM Quality in Inflows of a Drinking Water Reservoir: Linking of van Krevelen Diagrams with EEMF Spectra by Rank Correlation, Environmental Science & Technology, 46(10), PP. 5511-5518.
Hoge, F.E. & Lyon, P.E., 1996, Satellite Retrieval of Inherent Optical Properties by Linear Matrix Inversion of Oceanic Radiance Models: An Analysis of Model and Radiance Measurement Errors, Journal of Geophysical Research: Oceans, 101(C7), PP. 16631-16648.
Hoge, F.E., Vodacek, A., Swift, R.N., Yungel, J.K. & Blough, N.V., 1995, Inherent Optical Properties of the Ocean: Retrieval of the Absorption Coefficient of Chromophoric Dissolved Organic Matter from Airborne Laser Spectral Fluorescence Measurements, Applied Optics, 34(30), PP. 7032-7038.
Joshi, I.D., D'Saa, E.J., Osburnb, C.L., Bianchic, T.S., Ko, D.S., Oviedo-Vargas, D., Arellano, A.R. & Ward, N.D., 2017, Assessing Chromophoric Dissolved Organic Matter (CDOM) Distribution, Stocks, and Fluxes in Apalachicola Bay Using Combined Field, VIIRS Ocean Color, and Model Observations, Remote Sensing of Environment, 191, PP. 359-372.
Kallio, K., 1999, Absorption Properties of Dissolved Organic Matter in Finnish Lakes, Proc. Estonian Acad. Sci. Biol. Eco, l48, PP. 75-83.
Kallio, K., Attila, J., Härmä, P., Koponen, S., Pulliainen, J., Hyytiäinen, U-M & Pyhälahti, T., 2008, Landsat ETM+ Images in the Estimation of Seasonal Lake Water Quality in Boreal River Basins, Environmental Management, 42(3), PP. 511-522.
Kecman, V., 2001, Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models,‎ Bradford Books.
Kutser, T., 2012, The Possibility of Using the Landsat Image Archive for Monitoring Long Time Trends in Coloured Dissolved Organic Matter Concentration in Lake Waters, Remote Sensing of Environment, 123, PP. 334-338.
Kutser, T., Alikas, K., Kothawala, D.N. & Köhler, S.J., 2015a, Impact of Iron Associated to Organic Matter on Remote Sensing Estimates of Lake Carbon Content, Remote Sensing of Environment,156, PP. 109-116.
Kutser, T., Pierson, D.C., Kallio, K.Y., Reinart, A. & Sobek, S., 2005, Mapping Lake CDOM by Satellite Remote Sensing, Remote Sensing of Environment, 94(4), PP. 535-540.
Kutser, T., Tranvik, L. & Pierson, D.C., 2009, Variations in Colored Dissolved Organic Matter between Boreal Lakes Studied by Satelliteremote Sensing, Journal of Applied Remote Sensing, 3(1), P. 033538.
Kutser, T., Verpoorter, C., Paavel, B. & Tranvik, L.J., 2015b, Estimating Lake Carbon Fractions from Remote Sensing Data, Remote Sensing of Environment, 157, PP. 138-146.
Lee, Z., Carder, K.L. & Arnone, R.A., 2002, Deriving Inherent Optical Properties from Water Color: A Multiband Quasi-Analytical Algorithm for Optically Deep Waters, Applied Optics, 41(27), PP. 5755-5772.
Lee, Z., Carder, K.L., Hawes, S.K., Steward, R.G., Peacock, T.G. & Davis, C.O., 1994, Model for the Interpretation of Hyperspectral Remote-Sensing Reflectance, Applied Optics, 33(24), PP. 5721-5732.
Mannino, A., Russ, M.E. & Hooker, S.B., 2008, Algorithm Development and Validation for SatelliteDerived Distributions of DOC and CDOM in the US Middle Atlantic Bight, Journal of Geophysical Research: Oceans, 113(C7).
Matilainen, A., Vepsäläinen, M. & Sillanpää, M., 2010, Natural Organic Matter Removal by Coagulation during Drinking Water Treatment: A Review, Advances in Colloid and Interface Science, 159(2), PP. 189-197.
McDonald, T.A. & Komulainen, H., 2005, Carcinogenicity of the Chlorination Disinfection by-Product MX, Journal of Environmental Science and Health Part C,23(2), PP. 163-214.
Menken, K.D., Brezonik, P.L. & Bauer, M.E. 2006, Influence of Chlorophyll and Colored Dissolved Organic Matter (CDOM) on Lake Reflectance Spectra: Implications for Measuring Lake Properties by Remote Sensing, Lake and Reservoir Management, 22(3), PP. 179-190.
Mobley, C.D., Sundman, L.K., Davis, C.O., Bowles, J.H., Downes, T.V., Leathers, R.A., Montes, M.J., Bissett, W.P., Kohler, D.D.R., Reid, R.P., Louchard, E.M. & Gleason, A., 2005, Interpretation of hyperspectral remote-sensing imagery by spectrum matching and look-up tables, Applied Optics, 44(17), PP. 3576-3592.
Nelson, N.B. & Coble, P.G., 2009, Optical Analysis of Chromophoric Dissolved Organic Matter, Practical Guidelines for the Analysis of Seawater, CRC Press, PP. 91-108.
Roushangar, K. & Koosheh, A., 2015, Evaluation of GA-SVR Method for Modeling Bed Load Transport in Gravel-Bed Rivers, Journal of Hydrology, 527, PP. 1142-1152.       
Schölkopf, B., 2000, Statistical Learning and Kernel Methods, Microsoft Research, Cambridge, UK.
Shawe-Taylor, J. & Cristianini, N., 2004, Kernel Methods for Pattern Analysis, Cambridge University Press.
Shuchman, R.A., Leshkevich, G., Sayers, M.J., Johengen, T.H., Brooks, C.N. & Pozdnyakov, D., 2013, An Algorithm to Retrieve Chlorophyll, Dissolved Organic Carbon, and Suspended Minerals from Great Lakes Satellite Data, Journal of Great Lakes Research, 39(1), PP. 14-33.
Toming, K., Toming, K., Kutser, T., Tuvikene, L., Viik, M., Nõges, T. 2016, Dissolved Organic Carbon and Its Potential Predictors in Eutrophic Lakes, Water Research, 102, PP. 32-40.
Tranvik, L.J., 1990, Bacterioplankton growth on fractions of dissolved organic carbon of different molecular weights from humic and clear waters, Appl. Environ. Microbiol., 56(6), PP. 1672-1677.
Vahtmäe, E., T., Kutser, G., Martin & J., Kotta, 2006, Feasibility of Hyperspectral Remote Sensing for Mapping Benthic Macroalgal COVER in Turbid Coastal Waters—a Baltic Sea Case Study, Remote Sensing of Environment, 101(3), PP. 342-351.
Verma, A., Llorà, X., Goldberg, D.E. & Campbell, R.H., 2009, Scaling Genetic Algorithms Using Mapreduce, Ninth International Conference on IntelligentSystems Design and Applications, IEEE.
Vertucci, F.A. & Likens, G.E., 1989, Spectral Reflectance and Water Quality of Adirondack Mountain Region Lakes, Limnology and Oceanography, 34(8), PP. 1656-1672.
Wetzel, R.G., 2001, Limnology: Lake and River Ecosystems, Gulf Professional Publishing.
Zhu, W., Yu, Q., Tian, Y.Q., Becker, B.L., Hunter, T.Z. & Carrick, J., 2014, An Assessment of Remote Sensing Algorithms for Colored Dissolved Organic Matter in Complex Freshwater Environments, Remote Sensing of Environment, 140, PP. 766-778.
Zhu, W., Yu, Q., Tian, Y.Q., Chen, R.F. & Gardner, G.B., 2011, Estimation of Chromophoric Dissolved Organic Matter in the Mississippi and Atchafalaya River Plume Regions Using AboveSurface Hyperspectral Remote Sensing, Journal of Geophysical Research: Oceans, 116(C2).