فرجزاده، ن.، هاشمزاده، م.، ۱۳۹۸، تشخیص سازههای ساخت بشر در تصاویر هوایی با استفاده از ویژگیهای آماری مبتنیبر رنگ و یادگیری ماشین، سنجش از دور و GIS ایران، سال یازدهم، شمارة ۳، صص. 42-21.
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P. & Süsstrunk, S., 2012, SLIC Superpixels Compared to State-of-the-Art Superpixel Methods, IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(11), PP. 2274-2282.
Aggarwal, C.C., 2018, Neural Networks and Deep Learning, Springer.
Akçay, H.G. & Aksoy, S., 2010, Building Detection Using Directional Spatial Constraints, Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International, IEEE.
Alshehhi, R., Marpu, P.R., Woon, W.L., Dalla Mura, M. & Sensing, R., 2017, Simultaneous Extraction of Roads and Buildings in Remote Sensing Imagery with Convolutional Neural Networks, ISPRS Journal of Photogrammetry and Remote Sensing, 130, PP. 139-149.
Arı, Ç., Aksoy, S. & Sensing, R., 2014, Detection of Compound Structures Using a GaussianMixture Model with Spectral and Spatial Constraints, IEEE Transactions on Geoscience and Remote Sensing, 52(10), PP. 6627-6638.
Bai, X., Zhang, H. & Zhou, J., 2014, VHR Object Detection Based on Structural Feature Extraction and Query Expansion, IEEE Transactions on Geoscience and Remote Sensing, 52(10), PP. 6508-6520.
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K. & Yuille, A., 2014, Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected Crfs.
Chen, L., Zhu, Q., Xie, X., Hu, H. & Zeng, H., 2018, Road Extraction from VHR Remote-Sensing Imagery via Object Segmentation Constrained by Gabor Features, ISPRS Int. J. Geo-Inf., 7(9), P. 362.
Cheng, G. & Han, J., 2016, A Survey on Object Detection in Optical Remote Sensing Images, ISPRS Journal of Photogrammetry and Remote Sensing, 117, PP. 11-28.
Cheng, Y., Wang, D., Zhou, P. & Zhang, T., 2018, Model Compression and Acceleration for Deep Neural Networks: The Principles, Progress, and Challenges, IEEE Signal Processing Magazine, 35(1), PP. 126-136.
Chollet, F., 2017, Xception: Deep Learning withDepthwise Separable Convolutions, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
Clinton, N., Holt, A., Scarborough, J., Yan, L. & Gong, P., 2010, Accuracy Assessment Measures for Object-Based Image Segmentation Goodness, Photogramm. Eng. Remote Sens, 76(3), PP. 289-299.
Contreras, D., Blaschke, T., Tiede, D., Jilge, M.J.C. & Science, G.I., 2016, Monitoring Recovery after Earthquakes through the Integration of Remote sensing, GIS, and Ground Observations: The Case of L’Aquila (Italy), Cartography and Geographic Information Science, 43(2), PP. 115-133.
Das, S., Mirnalinee, T., Varghese, K. & Sensing, R., 2011, Use of Salient Features for the Design of a Multistage Framework to Extract Roads from High-Resolution Multispectral Satellite Images, IEEE Transactions on Geoscience and Remote Sensing, 49(10), PP. 3906-3931.
Eckle, K. & Schmidt-Hieber, J., 2019, A Comparison of Deep Networks with ReLU Activation Function and Linear Spline-Type Methods, Neural Networks, 110, PP. 232-242.
Feizizadeh, B., Tiede, D., Rezaei Moghaddam, M.H. & Blaschke, T., 2014, Systematic Evaluation of Fuzzy Operators for Object-Based Landslide Mapping, South-Eastern European Journal of Earth Observation and Geomatics, 3(2s), PP. 219-222.
Goodin, D.G., Anibas, K.L. & Bezymennyi, M., 2015, Mapping Land Cover and Land Use from Object-Based Classification: An Example from a Complex Agricultural Landscape, International Journal of Remote Sensing, 36(18), PP. 4702-4723.
Grabner, H., Nguyen, T.T., Gruber, B. & Bischof, H., 2008, On-Line Boosting-Based Car Detection from Aerial Images, ISPRS Journal of Photogrammetry and Remote Sensing, 63(3), PP. 382-396.
Hay, G.J., Blaschke, T., Marceau, D.J., Bouchard A., 2003, A Comparison of Three Image-Object Methods for the Multiscale Analysis of Landscape Structure, ISPRS Journal of Photogrammetry and Remote Sensing, 57(5-6), PP. 327-345.
Hinton, G.E. & Salakhutdinov, R.R., 2006, Reducing the Dimensionality of Data with Neural Networks, Science, 313(5786), PP. 504-507.
Hui, J., Du, M., Ye, X., Qin, Q. & Sui, J., 2018, Effective Building Extraction From High-Resolution Remote Sensing Images With Multitask Driven Deep Neural Network, IEEE Geoscience and Remote Sensing Letters, 16(5), PP. 786-790.
Ioffe, S. & Szegedy, C., 2015, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.
Kluckner, S. & Bischof, H., 2009, Semantic Classification by Covariance Descriptors within a RandomizedForest, Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on, IEEE.
Kluckner, S., Mauthner, T., Roth, P.M. & Bischof, H., 2009, Semantic Classification in Aerial Imagery by Integrating Appearance and Height Information, Asian Conference on Computer Vision, Springer.
Kozma, R., Alippi, C., Choe, Y. & Morabito, F.C., 2018, Artificial Intelligence in the Age of Neural Networks and Brain Computing, Academic Press.
Lefèvre, S. & Weber, J., 2007, Automatic Building Extraction in VHR Images Using Advanced Morphological Operators, Urban Remote Sensing Joint Event, 2007, IEEE.
Leitloff, J., Hinz, S. & Stilla, U., 2010, Vehicle Detection in Very High Resolution Satellite Images of City Areas, IEEE Transactions on Geoscience and Remote Sensing, 48(7), PP. 2795-2806.
Leninisha, S. & Vani, K., 2015, Water Flow Based Geometric Active Deformable Model for Road Network, ISPRS Journal of Photogrammetry and Remote Sensing, 102, PP. 140-147.
Li, E., Femiani, J., Xu, S., Zhang, X. & Wonka, P., 2015, Robust Rooftop Extraction from Visible Band Images Using Higher Order CRF, IEEE Transactions on Geoscience and Remote Sensing, 53(8), PP. 4483-4495.
Lin, Y., He, H., Yin, Z. & Chen, F., 2015, Rotation-Invariant Object Detection in Remote Sensing Images Based on Radial-Gradient Angle, IEEE Geoscience and Remote Sensing Letters, 12(4), PP. 746-750.
Liu, G., Sun, X., Fu, K. & Wang, H., 2013, Aircraft Recognition in High-Resolution Satellite Images Using Coarse-to-Fine Shape Prior, IEEE Geoscience and Remote Sensing Letters,1(3), PP. 573-577.
Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y. & Alsaadi, F.E., 2017, A Survey of Deep Neural Network Architectures and their Applications, Neurocomputing, 234, PP.11-26.
Long, J., Shelhamer, E. & Darrell, T., 2015, Fully Convolutional Networks for Semantic Segmentation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
Maggiori, E., Tarabalka, Y., Charpiat, G. & Alliez, P., 2017, Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification, IEEE Transactions on Geoscience and Remote Sensing, 55(2), PP. 645-657.
Mayer, H., 1999, Automatic Object Extraction from Aerial Imagery—A Survey Focusing on Buildings, Computer Vision and Image Understanding, 74(2), PP. 138-149.
Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon, O., Raju, B., Shahrzad, H., Navruzyan, A. & Duffy, N., 2019, Evolving Deep Neural Networks, Artificial Intelligence in the Age of Neural Networks and Brain Computing, Elsevier, PP. 293-312.
Minh, V., 2013, Machine Learning for Aerial Image Labeling, University of Toronto (Canada).
Nogueira, K., Penatti O.A.B. & dos Santos, J.A., 2017, Towards Better Exploiting Convolutional Neural Networks for Remote Sensing Scene Classification, Pattern Recognition, 61, PP. 539-556.
Ok, A.O., Senaras, C. & Yuksel, B., 2013, Automated Detection of Arbitrarily ShapedBuildings in Complex Environments from Monocular VHR Optical Satellite Imagery, IEEE Transactions on Geoscience and Remote Sensing, 51(3), PP. 1701-1717.
Panboonyuen, T., Jitkajornwanich, K., Lawawiro-jwong, S., Srestasathiern, P. & Vateekul, P., 2017, Road Segmentation of Remotely-Sensed Images Using Deep Convolutional Neural Networks with Landscape Metrics and Conditional Random Fields, Remote Sensing, 9(7), P. 680.
Ronneberger, O., Fischer, P. & Brox, T., 2015, U-net: Convolutional Networks for Biomedical Image Segmentation, International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer.
Seeliger, K., Fritsche, M., Güçlü, U., Schoenmakers, S., Schoffelen, J.-M., Bosch, S. & van Gerven, M.J.N., 2018, Convolutional Neural Network-Based Encoding and Decoding of Visual Object Recognition in Space and Time, NeuroImage, 180, PP. 253-266.
Song, M., Civco, D. & Sensing, R., 2004, Road Extraction Using SVM and Image Segmentation, American Society for Photogrammetry and Remote Sensing, 70(12), PP. 1365-1371.
Sun, H., Sun, X., Wang, H., Li, Y. & Li, X., 2012, Automatic Target Detection in High-Resolution Remote Sensing Images Using Spatial Sparse Coding Bag-of-Words Model, IEEE Geoscience and Remote Sensing Letters, 9(1), PP. 109-113.
Tuermer, S., Kurz, F., Reinartz, P. & Stilla, U., 2013, Airborne Vehicle Detection in Dense Urban Areas Using HoG Features and Disparity Maps, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(6), PP. 2327-2337.
Walker, J. & Blaschke, T., 2008, Object Based Land Cover Classification for the Phoenix Metropolitan Area: Optimization vs. Transportability, International Journal of Remote Sensing, 29(7), PP. 2021-2040.
Wang, H., Nie, F., Huang, H. & Ding, C., 2013, Heterogeneous Visual Features Fusion via Sparse Multimodal Machine, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
Wang, J., Song, J., Chen, M. & Yang, Z., 2015, Road Network Extraction: A Neural-Dynamic Framework Based on Deep Learning and a Finite State Machine, International Journal of Remote Sensing, 36(12), PP. 3144-3169.
Yokoya, N. & Iwasaki, A., 2015, Object Detection Based on Sparse Representation and Hough Voting for Optical Remote Sensing Imagery, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(5), PP. 2053-2062.
Zhao, Y.-Q. & Yang, J., 2015, Hyperspectral Image Denoising via Sparse Representation and Low-Rank Constraint, IEEE Transactions on Geoscience and Remote Sensing, 53(1), PP. 296-308.