نوع مقاله : علمی - پژوهشی
نویسندگان
1 استادیار گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشگاه تربیت مدرس، تهران
2 دانشجوی کارشناسی ارشد سنجش از دور و سیستم اطلاعات جغرافیایی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
Differentiating agricultural areas which are not covered by vegetation from bare lands as well as identifying bare lands from urban areas in medium spatial resolution images, e.g. Landsat imagery, are usually difficult and erroneous tasks which lead to the inaccurate classification results. Therefore, this study aims to present a new approach to increase the accuracy of the classification. For this purpose, different scenarios were applied based on different input attributes. The input attributes comprised of spectral bands, textural attributes, i.e. grey level co-occurrence matrix (GLCM), and two types of indices including spatial and thermal attributes proposed in this study. Three classification methods, maximum likelihood (ML), artificial neural networks (ANN), and support vector machine (SVM) embedded with different kernels, were applied to examine different scenarios. The results showed that SVM algorithm embedded with Radial basis function (RBF) results in better accuracy, with overall accuracy of 98.81% and Kappa coefficient of 98.25%, when all types of input attributes were combined together. Finally, the variable importance analysis by random forest feature selection indicated that the proposed indices played an important role to execute more efficient classification by SVM.
کلیدواژهها [English]