تخمین شوری خاک در بستر خشک‌شده دریاچه ارومیه با استفاده از تصاویر اپتیک سنتینل 2B و مدل‌های رگرسیون خطی چندمتغیره

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشکده مهندسی عمران، دانشگاه تبریز

2 دانشکده شیمی، دانشگاه صنعتی اصفهان

چکیده

شوری خاک، یکی از شایع‌ترین و مهم‌ترین عوامل تخریب اراضی در مناطق خشک و نیمه‌خشک بوده و پایش و مدیریت صحیح آن امری ضروری است. در کشور ایران، بسیاری از اراضی کشور، در معرض افزایش شوری خاک قرار گرفته است که از مهم‌ترین آنها می‌توان به سواحل دریاچه ارومیه اشاره کرد. از آنجا که تکنیک‌های سنجش از دور، روشی کارآمد و مقرون به‌صرفه در پایش شوری خاک هستند، در سال‌های اخیر بهره‌گیری از این فناوری توسعه چشمگیری یافته و مدل‌های مختلفی برای این منظور توسعه داده شده است. از جمله پرکاربردترین آن‌ها، می‌توان به مدل‌های رگرسیون خطی اشاره کرد. این تکنیک‌ها، عمدتاً تک‌متغیره بوده و تلفیق باندهای طیفی در تخمین شوری خاک مغفول واقع شده است. در تحقیق حاضر، به‌منظور بهبود تخمین شوری خاک با تصاویر چندطیفی، مدل‌های رگرسیون خطی چندمتغیره پیشنهاد شده است. روش پیشنهادی، به‌طور همزمان، پتانسیل محدود ولی متفاوت باندهای طیفی مختلف را بکار گرفته و انتظار می‌رود به دقت‌های بالایی در تخمین شوری خاک بیانجامد. به منظور ارزیابی روش پیشنهادی، میزان شوری خاک در بستر خشک‌شده دریاچه ارومیه اندازه‌گیری شد. داده اصلی مورد استفاده در این تحقیق، تصویر چندطیفی سنتینل  است که در تاریخ 6 اکتبر 2018 از منطقه مورد مطالعه اخذ شده است. در تحقیق حاضر، از 8 باند طیفی تصویر سنتینل (باندهای مرئی و مادون‌قرمز) و 17 شاخص شوری برای تخمین شوری خاک استفاده شد. برای کالیبراسیون مدل‌ها و ارزیابی صحت آنها در تخمین شوری خاک، طی عملیات صحرائی، تعداد 28 نمونه آموزشی و 10 نمونه ارزیابی در زمان گذر ماهواره از سطح منطقه مورد مطالعه جمع‌آوری شده و هدایت الکتریکی آنها، در آزمایشگاه مرکزی دانشگاه تبریز اندازه‌گیری شد. پس از کالیبراسیون مدل‌های رگرسیون خطی تک‌متغیره و مدلهای رگرسیون خطی چندمتغیره پیشنهادی، صحت تخمین شوری خاک در هر یک از این مدلها، با استفاده از پارامترهای ضریب تبیین‌ و مجذور میانگین مربعات خطا  در محل نمونه‌های ارزیابی مورد بررسی قرار گرفت. نتایج ارزیابی نشان داد در مدل‌های رگرسیون خطی تک‌متغیره، بهترین مدل‌ها برای تخمین شوری خاک از باند مادون قرمز نزدیک باریک (8a) و شاخص روشنایی (BI) حاصل شده است که متناظر با بالاترین میزان و پایین‌ترین مقدار  در بین سایر مدل‌های رگرسیون خطی تک‌متغیره بوده است. مقادیر  و  برای باند  به ترتیب 89/0 و 85/20 بوده و برای شاخص BI به ترتیب برابر 83/0 و 33/21 است. در مقایسه با مدل‌های رگرسیون خطی تک‌متغیره موجود، رگرسیون‌های خطی چند‌متغیره پیشنهادی در این تحقیق، عمدتاً از دقت بالاتری در تخمین شوری خاک برخوردار بوده است. بهترین نتایج، از مدل رگرسیون خطی 7 متغیره حاصل شده است که بالاترین مقدار  و پایین‌ترین مقدار  نمونه‌های ارزیابی را در بین تمامی مدل‌های رگرسیون خطی تک‌متغیره و چندمتغیره داشته است (97/0=  و 77/8 =RMSE). پس از تعیین دقیق‌ترین مدل‌های رگرسیون خطی تک‌متغیره و چند‌متغیره در تخمین شوری خاک، نقشه‌های شوری خاک منطقه که اطلاعات ارزشمندی از وسعت، توزیع مکانی و غلظت شوری را نشان می‌دهد، تهیه شد. نقشه‌های شوری خاک نشان می‌دهد که در بخش وسیعی از منطقه، شوری خاک بیشتر از 60 دسی زیمنس بر متر است. نتایج این تحقیق، موید قابلیت بالای رگرسیون خطی چندمتغیره پیشنهادی در این تحقیق و همچنین پتانسیل ارزشمند تصاویر چندطیفی سنتینل 2B در تخمین شوری خاک است.

کلیدواژه‌ها


عنوان مقاله [English]

Estimating soil salinity in the dried lake bed of Urmia Lake using optical Sentinel-2B images and multivariate linear regression models

نویسندگان [English]

  • Nesa Farahmand 1
  • Vahid Sadeghi 1
  • Shohreh Farahmand 2
1 Faculty of Civil Eng., Tabriz University
2 Faculty of Chemistry, Esfahan University of Technology
چکیده [English]

In this study, processing and interpretation methods in remote sensing such as visual and spectral analysis have been performed on the EO-1, ASTER and ETM+ data from Meshkinshahr North area, and as a result, the alteration zones in the area have been identified. Then result Aeromagnetic data, using geological information, alteration and mineralization from the area.  Development of advanced tools in remote sensing and geophysical exploration during recent decades indicates the necessity and importance of these tools in industry. For this purpose, a variety of image processing methods are used Aeromagnetic methods have an important role for exploration of metallic ore deposits. To achieve good results from these methods. In order to identify alteration zones, image processing methods such as PCA (principal component analysis), SAM (spectral angle mapping) and MTMF (Matched Filtering MF) using ENVI software were applied on the Hyperion EO-1, ASTER and ETM+ images from the study area. After removal of the noise from observed magnetic data, processing steps were considered, including IGRF subtraction for the proper years, reduction to pole, Signal Analytic, Tilt (TDR), THDR, and upward continuation 1000 meters. Identification of alteration zones in the study area using remote sensing and image processing methods, and interpretation of the geophysical Aeromagnetic results using geological and Mineralization and Hot Springs and Faults information in the area have been led to the identification of Alteration zone. Many Anomaly and Alterations Kaolinite and silica located in the Meshkinshahr north area (northwest Sabalan) and the other many situated in the northwest Sarab. For credibility of results, samples were taken and analyzed by XRD methods. Confirmed the results of remote sensing and aeromagnetic processes. Conclusions of this research revealed that applying concurrency both the remote sensing and aeromagnetic data could be led to improve the precision of the results.

کلیدواژه‌ها [English]

  • Soil salinity
  • remote sensing
  • Linear Regression
  • Sentinel images
  • Dried Lake-bed of Urmia Lake
  1. پیشنماز احمدی، م.، رضایی مقدم، م. و فیضی زاده، ب.، 1396، بررسی شاخص ها و تهیه نقشه شوری خاک با استفاده از داده‌های سنجش از دور (مطالعه موردی: دلتای آجی چای)، سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی، سال هشتم، شماره اول، صص. 95-85.
  2. حبشی، خ.، کریم زاده، ح.، پورمنافی، س.، 1396، ارزیابی شوری خاک در شرق اصفهان بر پایه داده‌های سنجنده OLI و تجزیه و تحلیل عوارض توپوگرافی، سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی، سال هشتم، شماره اول، صص. 51-36.
  3. Aghakouchak, A., Norouzi, H., Madani, K., Mirchi, A., Azarderakhsh, M., Nazemi, A., Nasrollahi, N., Farahmand, A., Mehran, A. & Hasanzadeh, E., 2014, Aral Sea syndrome desiccates Lake Urmia: Call for action, Journal of Great Lakes Research, 41(1); 307-311.
  4. Akramkhanov, A. & Vlek, P.L.G., 2011, The Assessment of Spatial Distribution of Soil Salinity Risk Using Neural Network, Environmental Monitoring and Assessment, 184(4) : 2475–2485.
  5. Alesheikh, A.A., Ghorbanali, A. & Nouri, N., 2007, Coastline Change Detection Using Remote Sensing, Internatinal Journal of Environmental Science & Technology, 4(1): 61–66.
  6. Allbed, A. & Kumar, L., 2013, Soil Salinity Mapping and Monitoring in Arid and Semi-Arid Regions Using Remote Sensing Technology: A Review, Advances in Remote Sensing, 02(04): 373–385.
  7. Allbed, A., Kumar, L. & Aldakheel Y.Y., 2014, Assessing Soil Salinity Using Soil Salinity and Vegetation Indices Derived from IKONOS High-Spatial Resolution Imageries : Applications in a Date Palm Dominated Region, Geoderma, 230–231: 1–8.
  8. Asfaw, E., Suryabhagavan, K.V. & Argaw, M., 2018, Soil Salinity Modeling and Mapping Using Remote Sensing and GIS: The Case of Wonji Sugar Cane Irrigation Farm, Ethiopia, Journal of the Saudi Society of Agricultural Sciences, 17(3): 250–258
  9. Bannari, A., Guedon, A.M., El Harti, A., Cherkaoui, F.Z. & El-Ghmari, A., 2008, Characterization of Slightly and Moderately Saline and Sodic Soils in Irrigated Agricultural Land Using Simulated Data of Advanced Land Imaging ( EO ‐ 1 ) Sensor, Communications in Soil Science and Plant Analysis, 39(19-20): 2795–2811.
  10. Cai, S., Zhang, R., Liu, L. & Zhou, D., 2010, A Method of Salt-Affected Soil Information Extraction Based on a Support Vector Machine with Texture Features, Mathematical and Computer Modelling, 51(11–12): 1319–1325.
  11. Chatziantoniou, A., Psomiadis, E. & Petropoulos, g., 2017, Co-Orbital Sentinel 1 and 2 for LULC Mapping with Emphasis on Wetlands in a Mediterranean Setting Based on Machine Learning, Remote Sensing, 9(21), 1259.
  12. Csillag, F., Pasztor, L. & Biehl, L., 1993, Spectral Band Selection for the Characterization of Salinity Status of Soils, Remote sensing of environment, 43(3): 231–42.
  13. Dehaan, R. & Taylor, G., 2002, Field-Derived Spectra of Salinized Soils and Vegetation as Indicators of Irrigation-Induced Soil Salinization, Remote sensing of Environment, 80(3): 406–17.
  14. Douaoui, A.E.K., Nicolas, H. & Walter, C., 2006, Detecting Salinity Hazards within a Semiarid Context by Means of Combining Soil and Remote-Sensing Data, Geoderma, 134: 217–230.
  15. Eldeiry, A.A. & Garcia, L.A., 2010, Comparison of Ordinary Kriging, Regression Kriging, and Cokriging Techniques to Estimate Soil Salinity Using LANDSAT Images, Journal of Irrigation and Drainage Engineering, 136(6): 355–364.
  16. Elhag, M., 2016, Evaluation of Different Soil Salinity Mapping Using Remote Sensing Techniques in Arid Ecosystems, Saudi Arabia, Journal of Sensors, 1-8.
  17. Emadi, M. & Baghernejad, M., 2014, Comparison of Spatial Interpolation Techniques for Mapping Soil PH and Salinity in Agricultural Coastal Areas , Northern Iran, Archives of Agronomy and Soil Science, 60(9): 1315–1327.
  18. Fan, X., Pedroli, B., Liu, G., Liu, Q., Liu, H. & Shu, L., 2012, Soil salinity development in the yellow river delta in relation to groundwater dynamics, Land Degradation & Development, 23(2): 175-189.
  19. Fathi, M. & Rezaei, M., 2013, Soil Salinity in the Central Arid Region of Iran : Esfahan Province, Development in Soil Salinity Assessment and Reclamation, Springer, Dordrecht, PP. 141-153.
  20. Gorji, T., Sertel, E. & Tanik, A., 2017, Monitoring Soil Salinity via Remote Sensing Technology under Data Scarce Conditions : A Case Study from Turkey, Ecological Indicators 74: 384–391.
  21. Ji, L., Zhang, L. & Wylie, B., 2009, Analysis of Dynamic Thresholds for the Normalized Difference Water Index, Photogrammetric Engineering & Remote Sensing, 75(11): 1307–1317.
  22. Khan, N.M., Rastoskuev, V.V., Sato, Y. & Shiozawa, S., 2005, Assessment of Hydrosaline Land Degradation by Using a Simple Approach of Remote Sensing Indicators, Agricultural Water Management, 77: 96–109.
  23. Mahmoudabadi, E., Karimi, A., Haghnia, G.H. & Sepehr, A., 2017, Digital Soil Mapping Using Remote Sensing Indices, Terrain Attributes and Vegetation Features in the Rangelands of Northeastern Iran, Environmental Monitoring and Assessment, 189: 500-520.
  24. Morgan, R.S., Abd El-Hady, M. & Rahim, I.S., Soil Salinity Mapping Utilizing Sentinel-2 and Neural Networks, Agricultural Research Communication Center., 316: 1-6.
  25. Navarro, G., Caballero, I., Silva, G., Parra, P-C. & Vazquez, A., Caldeira, R., 2017, Evaluation of Forest Fire on Madeira Island Using Sentinel-2A MSI Imagery, International Journal of Applied Earth Observations and Geoinformation, 58: 97–106.
  26. Nawar, S., Buddenbaum, H., Hill, J. & Kozak, J., 2014, Modeling and Mapping of Soil Salinity with Reflectance Spectroscopy and Landsat Data Using Two Quantitative Methods (PLSR and MARS), Remote Sensing, 6(11) :10813–10834.
  27. Rahmati, M., Mohammadi-Oskooei, M., Neyshabouri, M.R., Fakheri-Fard, A., Ahmadi, A., Walker, J., 2015, ETM + Data Applicability for Remote Sensing of Soil Salinity in Lighvan Watershed , Northwest of Iran, Current Opinion in Agricultural, 3(1): 10-13.
  28. Rhoades, J D., Shouse, P.J., Alves, W.J., Manteghi, N. & Lesch, S.M, 1990, Determining Soil Salinity from Soil Electrical Conductivity Using Different Models and Estimates, Soil Science Society of America Journal, 54: 46-54.
  29. Huete, A.R, 1988, A Soil-Adjusted Vegetation Index (SAVI), Remote Sensing of Environment, 25(3): 295–309.
  30. Scudiero, E., Skaggs, T.H. & Corwin, D.L., 2015, Regional-Scale Soil Salinity Assessment Using Landsat ETM + Canopy Re Fl Ectance, Remote Sensing of Environment, 169: 335–343.
  31. Sidike, A., Zhao, S. & Wen, Y., 2014, Estimating Soil Salinity in Pingluo County of China Using QuickBird Data and Soil Reflectance Spectra, International Journal of Applied Earth Observations and Geoinformation, 26: 156–175.
  32. Taghizadeh Mehrjardi, R., Mahmoodi, Sh., Taze, M. & Sahebjalal., E., 2008, Accuracy Assessment of Soil Salinity Map in Yazd-Ardakan Plain , Central Iran , Based on Landsat ETM + Imagery, American-Eurasian Journal of Agricultural & Environmental Sciences, 3(5): 708–712.
  33. Toming, K., Kuster, T., Laas, A., Sepp, M., Paveel, B. & Nõges, T., 2016, First Experiences in Mapping Lake Water Quality Parameters with Sentinel-2 MSI Imagery, Remote Sensing, 8(8): 640-654.
  34. Wang, X., Zhang, F., Ding, J., Kung, H.T, Latif, A. & Johnson, V.C., 2018, Science of the Total Environment Estimation of Soil Salt Content ( SSC ) in the Ebinur Lake Wetland National Nature Reserve ( ELWNNR ), Northwest China , Based on a Bootstrap-BP Neural Network Model and Optimal Spectral Indices, Science of the Total Environment, 615: 918–30.
  35. Wu, W., Mhaimeed, A.S., Al-Shafie, W.M., Ziadat, F., Dhehibi, B., Nangia, V. & Pauw, E.D., 2014, Mapping Soil Salinity Changes Using Remote Sensing in Central Iraq, Geoderma Regional, 2-3: 21–31.
  36. Yong-ling, W., Peng, G. & Zhi-liang, Z., 2010, A Spectral Index for Estimating Soil Salinity in the Yellow River Delta Region of China Using EO-1 Hyperion Data, Pedosphere, 20(3): 378–388.
  37. Zhang, T.T., Qi, J.G., Gao, Y., Ouyang, Z.T., Zeng, S.L. & Zhao, B., 2015, Detecting Soil Salinity with MODIS Time Series VI Data, Ecological Indicators, 52: 480–489.