ASI, 2020, PRISMA Product Specifications, 1-262.
Atzberger, C., 2010, Inverting the PROSAIL Canopy Reflectance Model Using Neural Nets Trained on Streamlined Databases, J. Spectr. Imaging, 1, P. a2, https://doi.org/ 10.1255/jsi.2010.a2.
Atzberger, C., Jarmer, T., Schlerf, M., Kötz, B. & Werner, W., 2003, Spectroradiometric Determination of Wheat Bio-Physical Variables: Comparison of Different Empirical-Statistical Approaches, Remote Sens. Transitions, Proc. 23rd EARSeL Symp, Belgium 2-5.
Bacour, C., Baret, F., Béal, D., Weiss, M. & Pavageau, K., 2006, Neural Network Estimation of LAI, fAPAR, fCover and LAI×Cab, from Top of Canopy MERIS REFLECTANCE DATA: PRINCIPLES and Validation, Remote Sens. Environ, 105, PP. 313-325, https://doi.org/https:// doi.org/10.1016/j.rse.2006.07.014.
Baret, F. & Buis, S., 2008, Estimating Canopy Characteristics from Remote Sensing Observations: Review of Methods and Associated Problems, Adv. L. Remote Sens. Syst. Model. Invers. Appl., PP. 173-201, https://doi.org/10.1007/978-1-4020-6450-0_7.
Bishop, C.M., 1995, Neural Networks for Pattern Recognition, Oxford University Press.
Buntine, W.L., 1991, Bayesian Back-Propagation 5.
Burden, F. & Winkler, D., 2008, Bayesian Regularization of Neural Networks, Methods Mol. Biol., 458, PP. 25-44, https://doi.org/10.1007/978-1-60327-101-1_3.
Casa, R., Upreti, D., Palombo, A., Pascucci, S., Yang, H., Yang, G., Huang, W. & Pignatti, S., 2020, Evaluation and Exploitation of Retrieval Algorithms for Estimating Biophysical Crop Variables Using Sentinel-2, Venµs and PRISMA Satellite Data, J. Geod. Geoinf. Sci., 3, PP. 79-88, https://doi.org/10.11947/j. JGGS.2020.0408
Choudhury, T.A., Hosseinzadeh, N. & Berndt, C.C., 2012, Improving the Generalization Ability of an Artificial Neural Network in Predicting In-Flight Particle Characteristics of an Atmospheric Plasma Spray Process, J. Therm. Spray Technol., 21, PP. 935-949, https://doi.org/ 10.1007/s11666-012-9775-9.
Combal, B., Baret, F. & Weiss, M., 2002, Improving Canopy Variables Estimation from Remote Sensing Data by Exploiting Ancillary Information, Case Study on Sugar Beet Canopies, Agronomie, 22, PP. 205-215, https://doi.org/10.1051/agro:2002008.
Dabrowska-Zielinska, K., Kogan, F., Ciolkosz, A., Gruszczynska, M. & Kowalik, W., 2002, Modelling of crop Growth Conditions and Crop Yield in Poland Using AVHRR-Based Indices, Int. J. Remote Sens., 23, PP. 1109-1123, https://doi.org/10.1080/01431160110070744.
Dan Foresee, F. & Hagan, M.T., 1997, Gauss-Newton Approximation to Bayesian Learning, in: IEEE International Conference on Neural Networks - Conference Proceedings. PP. 1930-1935, https://doi.org/10.1109/ICNN.1997.614194.
Danner, M., Berger, K., Wocher, M., Mauser, W. & Hank, T., 2021, Efficient RTM-Based Training of Machine Learning Regression Algorithms to Quantify Biophysical & Biochemical Traits of Agricultural Crops, ISPRS J. Photogramm. Remote Sens., 173, PP. 278-296, https://doi.org/https://doi.org/10.1016/ j.isprsjprs.2021.01.017.
Darvishzadeh, R., Skidmore, A., Schlerf, M. & Atzberger, C., 2008, Inversion of a Radiative Transfer Model for Estimating Vegetation LAI and Chlorophyll in a Heterogeneous Grassland, Remote Sensing of Environment, 112(5), PP. 2592-2604, https://doi.org/10. 1016/j.rse.2007.12.003.
De Grave, C., Verrelst, J., Morcillo-Pallarés, P., Pipia, L., Rivera-Caicedo, J.P., Amin, E., Belda, S. & Moreno, J., 2020, Quantifying Vegetation Biophysical Variables from the Sentinel-3/FLEX Tandem Mission: Evaluation of the Synergy of OLCI and FLORIS Data Sources, Remote Sens. Environ., 251, P. 112101, https://doi.org/ 10.1016/j.rse.2020.112101.
Demuth, H. & Beale, M., 2004, Neural Network Toolbox - For Use with MATLAB, Matlab.
Efron, B. & Tibshirani, R.J., 1994, An Introduction to the Bootstrap, CRC press.
Fang, H., Baret, F., Plummer, S. & Schaepman-Strub, G., 2019, An Overview of Global Leaf Area Index (LAI): Methods, Products, Validation, and Applications, Rev. Geophys., 57, PP. 739-799, https://doi.org/10.1029/2018RG000608.
Feng, N., Wang, F. & Qiu, Y., 2006, Novel Approach for Promoting the Generalization Ability of Neural Networks, Int. J. Signal Process, 2.
Gianola, D., Okut, H., Weigel, K.A. & Rosa, G.J., 2011, Predicting Complex Quantitative Traits with Bayesian Neural Networks: A Case Study with Jersey Cows and Wheat, BMC Genet., 12, P. 87, https://doi.org/10.1186/1471-2156-12-87.
Guarini, R., Loizzo, R., Longo, F., Mari, S., Scopa, T. & Varacalli, G., 2017, Overview of the Prisma Space and Ground Segment and Its Hyperspectral Products, in: International Geoscience and Remote Sensing Symposium (IGARSS), PP. 431-434, https://doi.org/10.1109/IGARSS.2017. 8126986.
Kayri, M., 2016, Predictive Abilities of Bayesian Regularization and Levenberg-Marquardt Algorithms in Artificial Neural Networks: A Comparative Empirical Study on Social Data, Math. Comput. Appl., 21, P. 20, https://doi.org/ 10.3390/mca21020020.
Kimes, D.S., Nelson, R.F., Manry, M.T. & Fung, A.K., 1998, Attributes of Neural Networks for Extracting Continuous Vegetation Variables from Optical and Radar Measurements, Int. J. Remote Sens., 19, PP. 2639-2663, https://doi.org/ 10.1080/014311698214433.
Kimes, D.S., Knyazikhin, Y., Privette, J.L., Abuelgasim, A.A. & Gao, F., 2000, Inversion Methods for physically‐Based Models, Remote Sens. Rev., 18, PP. 381-439, https://doi.org/10.1080/02757250009532396.
Kumar Sethy, P., Kanta Barpanda, N., Rath, A., Sethy, P.K., Patel, K. & Rath, A.K., 2019, BRANN Model for Identification of Rice Leaf Diseases Using Texture Feature, JETIR, 6(5), PP. 569-573.
Loizzo, R., Daraio, M., Guarini, R., Longo, F., Lorusso, R., DIni, L. & Lopinto, E., 2019, Prisma Mission Status and Perspective, in: International Geoscience and Remote Sensing Symposium (IGARSS), PP. 4503-4506, https://doi.org/10.1109/IGARSS.2019.8899272.
Lu, B., Dao, P.D., Liu, J., He, Y. & Shang, J., 2020, Recent Advances of Hyperspectral Imaging Technology and Applications in Agriculture, Remote Sens., 12, P. 2659, https://doi.org/10.3390/RS12162659.
Lwin, A., Yang, D. & Hong, X., 2020, Leveraging Bayesian Deep Learning for Spaceborne GNSS-R Retrieval on Global Soil Moisture, 2020 Int. Conf. Artif. Intell. Inf. Commun. ICAIIC 2020, PP. 352-355, https://doi.org/10.1109/ICAIIC48513.2020.9065053.
MacKay, D.J.C., 1992, Bayesian Interpolation, Neural Comput., 4, PP. 415-447, https:// doi.org/10.1162/neco.1992.4.3.415.
MacKay, D.J.C., 1995, Probable Networks and Plausible Predictions — A Review of Practical Bayesian Methods for Supervised Neural Networks, Netw. Comput. Neural Syst., 6, PP. 469-505, https://doi.org/10.1088/0954-898X_6_3_011.
Mzid, N., Castaldi, F., Tolomio, M., Pascucci, S., Casa, R. & Pignatti, S., 2022, Evaluation of Agricultural Bare Soil Properties Retrieval from Landsat 8, Sentinel‐2 and PRISMA Satellite Data, Remote Sens., 14, P. 714, https://doi.org/10.3390/rs14030714.
Neal, R.M., 2012, Bayesian Learning for Neural Networks, Springer Science & Business Media.
Okut, H., 2016, Bayesian Regularized Neural Networks for Small n Big p Data, Artificial Neural Networks - Models and Applications, IntechOpen, https://doi.org/ 10.5772/63256.
Pôças, I., Gonçalves, J., Costa, P.M., Gonçalves, I., Pereira, L.S. & Cunha, M., 2017, Hyperspectral-Based Predictive Modelling of Grapevine Water Status in the Portuguese Douro Wine Region, Int. J. Appl. Earth Obs. Geoinf., 58, PP. 177-190, https://doi.org/https://doi.org/10.1016/j.jag.2017.02.013.
Qu, Y., Wang, J., Wan, H., Li, X. & Zhou, G., 2008, A Bayesian Network Algorithm for Retrieving the Characterization of Land Surface Vegetation, Remote Sens. Environ., 112, PP. 613-622, https://doi.org/ https://doi.org/10.1016/j.rse.2007.03.031.
Richter, K., Atzberger, C., Hank, T.B. & Mauser, W., 2012, Derivation of Biophysical Variables from Earth Observation Data: Validation and Statistical Measures, J. Appl. Remote Sens., 6, PP. 063557-1, https://doi.org/10.1117/1.jrs.6.063557.
Rivera-Caicedo, J.P., Verrelst, J., Leonenko, G. & Moreno, J., 2013, Multiple Cost Functions and Regularization Options for Improved Retrieval of Leaf Chlorophyll Content and LAI through Inversion of the PROSAIL Model, Remote Sens., 5, PP. 3280-3304.
Rivera-Caicedo, J.P., Verrelst, J., Muñoz-Marí, J., Camps-Valls, G. & Moreno, J., 2017, Hyperspectral Dimensionality Reduction for Biophysical Variable Statistical Retrieval, ISPRS J. Photogramm. Remote Sens., 132, PP. 88-101, https://doi.org/ 10.1016/j.isprsjprs.2017.08.012.
Rumelhart, D.E., Hinton, G.E. & Williams, R.J., 1986, Learning Representations by Back-Propagating Errors, Nature, 323, PP. 533-536, https://doi.org/10.1038/323533a0.
Sanches, G.M., Graziano Magalhães, P.S. & Junqueira Franco, H.C., 2019, Site-Specific Assessment of Spatial and Temporal Variability of Sugarcane Yield Related to Soil Attributes, Geoderma, 334, PP. 90-98, https://doi.org/https://doi.org/10.1016/j.geoderma.2018.07.051.
Sariev, E. & Germano, G., 2020, Bayesian Regularized Artificial Neural Networks for the Estimation of the Probability of Default, Quant. Financ., 20, PP. 311-328, https://doi.org/10.1080/14697688.2019.1633014.
Sellers, P.J., Dickinson, R.E., Randall, D.A., Betts, A.K., Hall, F.G., Berry, J.A., Collatz, G.J., Denning, A.S., Mooney, H.A., Nobre, C.A., Sato, N., Field, C.B. & Henderson-Sellers, A., 1997, Modeling the Exchanges of Energy, Water, and Carbon between Continents and the Atmosphere, Science (80-. ), 275, PP. 502-509, https://doi.org/ 10.1126/science.275.5299.502.
Som-Ard, J., Atzberger, C., Izquierdo-Verdiguier, E., Vuolo, F., Immitzer, M., 2021, Remote Sensing Applications in Sugarcane Cultivation: A Review, Remote Sens., https://doi.org/10.3390/rs13204040.
Steyerberg, E.W., Harrell, F.E.J., Borsboom, G.J., Eijkemans, M.J., Vergouwe, Y. & Habbema, J.D., 2001, Internal Validation of Predictive Models: Efficiency of Some Procedures for Logistic Regression Analysis, J. Clin. Epidemiol., 54, PP. 774-781, https://doi.org/10.1016/s0895-4356(01) 00341-9.
Tagliabue, G., Boschetti, M., Bramati, G., Candiani, G., Colombo, R., Nutini, F., Pompilio, L., Rivera-Caicedo, J.P., Rossi, M., Rossini, M., Verrelst, J. & Panigada, C., 2022, Hybrid Retrieval of Crop Traits from Multi-Temporal PRISMA Hyperspectral Imagery, ISPRS J. Photogramm. Remote Sens., 187, PP. 362-377, https://doi.org/ 10.1016/j.isprsjprs.2022.03.014.
Teruel, D.A., Barbieri, V., & Ferraro Jr., L.A., 1997, Sugarcane Leaf Area Index Modeling under Different Soil Water Conditions, Sci. Agric., 54, PP. 39-44, https://doi.org/10.1590/s0103-90161997000300008.
Tikhonov, A.N., 1963, On the Solution of Ill-Posed Problems and the Method of Regularization, in: Doklady Akademii Nauk, Russian Academy of Sciences, PP. 501-504.
Urgesa, G.D. & Keyata, E.O., 2021, Effect of Harvesting Ages on Yield and Yield Components of Sugar Cane Varieties Cultivated at Finchaa Sugar Factory, Oromia, Ethiopia, Int. J. Food Sci., 2021, PP. 1-6, https://doi.org/10.1155/2021/ 2702095.
Vangi, E., D’amico, G., Francini, S., Giannetti, F., Lasserre, B., Marchetti, M. & Chirici, G., 2021, The New Hyperspectral Satellite Prisma: Imagery for Forest Types Discrimination, Sensors (Switzerland), 21(4), P. 1182, https://doi.org/10.3390/ s21041182.
Verrelst, J., Rivera, J.P., Leonenko, G., Alonso, L. & Moreno, J., 2014, Optimizing LUT-Based RTM Inversion for Semiautomatic Mapping of Crop Biophysical Parameters from Sentinel-2 and -3 Data: Role of Cost Functions, IEEE Trans. Geosci. Remote Sens., 52, PP. 257-269, https://doi.org/ 10.1109/TGRS.2013.2238242.
Verrelst, J., Camps-valls, G., Muñoz-marí, J., Pablo, J., Veroustraete, F., Clevers, J.G.P.W. & Moreno, J., 2015a, ISPRS Journal of Photogrammetry and Remote Sensing Optical Remote Sensing and the Retrieval of Terrestrial Vegetation Bio-Geophysical Properties – A Review, ISPRS J. Photogramm. Remote Sens., 108, PP. 273-290, https://doi.org/10.1016/ j.isprsjprs.2015.05.005.
Verrelst, J., Rivera, J.P., Veroustraete, F., Muñoz-Marí, J., Clevers, J.G.P.W., Camps-Valls, G. & Moreno, J., 2015b, Experimental Sentinel-2 LAI Estimation Using Parametric, Non-Parametric and Physical Retrieval Methods – A Comparison, ISPRS J. Photogramm. Remote Sens., 108, PP. 260-272, https://doi.org/https://doi.org/10.1016/j.isprsjprs.2015.04.013.
Verrelst, J., Malenovský, Z., Van der Tol, C., Camps-Valls, G., Gastellu-Etchegorry, J.-P., Lewis, P., North, P. & Moreno, J., 2019, Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods, Surv. Geophys., 40, PP. 589-629, https://doi.org/10.1007/s10712-018-9478-y.
Verrelst, J., Rivera-Caicedo, J.P., Reyes-Muñoz, P., Morata, M., Amin, E., Tagliabue, G., Panigada, C., Hank, T. & Berger, K., 2021, Mapping Landscape Canopy Nitrogen Content from Space Using PRISMA Data, ISPRS J. Photogramm. Remote Sens., 178, PP. 382-395, https://doi.org/10.1016/ j.isprsjprs.2021.06.017.
Verstraete, M.M., Pinty, B. & Myneni, R.B., 1996, Potential and Limitations of Information Extraction on the Terrestrial Biosphere from Satellite Remote Sensing, Remote Sens. Environ., 58, PP. 201-214, https://doi.org/https://doi.org/10.1016/S0034-4257(96)00069-7.
Watson, D.J., 1947. Comparative physiological studies on the growth of field crops: I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Annals of botany, 11(41), pp.41-76.
Yan, D., Zhou, Q., Wang, J. & Zhang, N., 2017, Bayesian Regularisation Neural Network Based on Artificial Intelligence Optimisation, Int. J. Prod. Res., 55, PP. 2266-2287, https://doi.org/10.1080/00207543. 2016.1237785.
Yao, Y., Rosasco, L. & Caponnetto, A., 2007, On Early Stopping in Gradient Descent Learning, Constr. Approx., 26, PP. 289-315, https://doi.org/10.1007/s00365-006-0663-2.
Ye, L., Jabbar, S.F., Abdul Zahra, M.M. & Tan, M.L., 2021, Bayesian Regularized Neural Network Model Development for Predicting Daily Rainfall from Sea Level Pressure Data: Investigation on Solving Complex Hydrology Problem, Complexity, 2021, PP. 1-14, https://doi.org/ 10.1155/ 2021/6631564.