تخمین کدورت و غلظت کلروفیل آ در دریای خزر از طریق آنالیز چندزمانه تصاویر ماهواره‌ای مادیس و شبکه‌های عصبی موجکی

نوع مقاله : علمی - پژوهشی

نویسندگان

دانشگاه خواجه‌نصیرالدین طوسی

چکیده

با توجه به وسعت جهانی منابع آب، اندازه‌گیری‌های زمینی از پارامترهای کیفی امکان‌پذیر نیست، همچنین نمونه‌برداری سنتی از آب و آنالیزهای آزمایشگاهی بسیار پرهزینه و زمان‌بر است. در مطالعات صورت گرفته، برآورد کدورت و غلظت کلروفیل آ به‌عنوان مهم‌ترین پارامترهای کیفی آب با استفاده از شبکه‌های عصبی مصنوعی با دقت مناسب توسط پژوهشگران انجام‌شده است. با توجه به مشکلاتی که در تهیه تعداد بالایی از داده‌های آموزشی در محیط‌های آبی وجود دارد استفاده از شبکه‌های ترکیبی مقاوم‌تری نظیر شبکه عصبی موجکی پیشنهادشده است. در این تحقیق انواع مختلفی از توابع موجک به‌عنوان تابع محرک شبکه مورداستفاده قرار گرفت و بهترین شبکه به‌منظور برآورد غلظت کلروفیل آ و کدورت به ترتیب شبکه‌های عصبی موجکی با تابع محرک مورلت و کلاه مکزیکی به دست آمد، داده‌های مورداستفاده محصول بازتاب اقیانوسی سنجنده مادیس است، به دلیل به‌کارگیری تصاویر چند زمانه نرمال‌سازی رادیومتریک داده‌ها انجام شد و نتایج نسبت به زمانی که از تصاویر نرمال نشده استفاده‌شده است، به‌صورت قابل‌توجهی بهبود یافت. در حالت چندزمانه علاوه بر افزایش تعداد داده‌های آموزشی، قابلیت تعمیم‌پذیری شبکه به سایر روزهایی که در آن تعداد داده میدانی کافی موجود نیست، فراهم‌شده است و دقت شبکه در این حالت در مقایسه باحالت تک زمانه افزایش یافت، درنهایت RMSE برای بهترین مدل به‌منظور برآورد کدورت و غلظت کلروفیل به ترتیب 047/0 و 071/0 به دست آمد که در مقایسه با دقت اندازه‌گیری میدانی 1/0، قابل‌قبول بوده و می‌تواند جایگزین مناسبی برای اندازه‌گیری‌های میدانی باشد.

عنوان مقاله [English]

Estimation of turbidity and chlorophyll a concentration in the Caspian Sea through time series analysis of satellite images and wavelet neural networks

نویسندگان [English]

  • Melika Haghparast
  • Mehdi Mokhtarzade
K.N.Toosi University
چکیده [English]

Due to the global scope of water resources, ground measurements of the quality parameters are not feasible, as well as traditional sampling of water and laboratory analysis is very costly and time-consuming. In studies, estimation of turbidity and chlorophyll a concentrations as the most important water quality parameters using artificial neural networks have been done by researchers. Considering the difficulties in providing a high number of training data in aquatic environments, the use of more robust hybrid networks such as the wavelet neural network is suggested. In this research, various types of wavelet functions were used as a network activation function, and the best network was used to estimate chlorophyll a and turbidity respectively, wavelet neural networks with a Morelt and a Mexican hat activation function, the data used for the reflection of the ocean reflectance of the modis sensor, Due to the use of multi-time images, the radiometric normalization of data was done and the results were significantly improved compared to the time when the non-normalized images were used. in addition to increasing the number of training data, the network generalization capability is provided to other days, and the accuracy of the network in this case increased compared to the one-day condition. the RMSE for the best model to estimate turbidity And chlorophyll a concentration was 0.047 and 0.071, respectively, which is acceptable in comparison with field accuracy of 0.1, and can be a alternative method for field measurements.

کلیدواژه‌ها [English]

  • remote sensing
  • Water Quality Parameters
  • Chlorophyll_a Concentration
  • Wavelet Neural Network
  1. - Adamowski, J. and Chan, H.F., 2011. A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology, 407(1), pp.28-40.
  2. - Alizadeh, Mohamad Javad, and Mohamad Reza Kavianpour. "Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean." Marine pollution bulletin 98.1 (2015): 171-178.
  3. - Ampe, E.M., Hestir, E.L., Bresciani, M., Salvadore, E., Brando, V.E., Dekker, A., Malthus, T.J., Jansen, M., Triest, L. and Batelaan, O., 2014. A wavelet approach for estimating chlorophyll-a from inland waters with reflectance spectroscopy. IEEE Geoscience and Remote Sensing Letters, 11(1), pp.89-93.
  4. - Chang, N.B., Imen, S. and Vannah, B., 2015. Remote Sensing for Monitoring Surface Water Quality Status and Ecosystem State in Relation to the Nutrient Cycle: A 40-Year Perspective. Critical Reviews in Environmental Science and Technology, 45(2), pp.101-166.
  5. - Chawira, M., Dube, T. and Gumindoga, W., 2013. Remote sensing based water quality monitoring in Chivero and Manyame lakes of Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C, 66, pp.38-44.
  6. - Chebud, Y., Naja, G.M., Rivero, R.G. and Melesse, A.M., 2012. Water quality monitoring using remote sensing and an artificial neural network. Water, Air, & Soil Pollution, 223(8), pp.4875-4887.
  7. - Chen, S., Fang, L., Li, H., Chen, W. and Huang, W., 2011. Evaluation of a three-band model for estimating chlorophyll-a concentration in tidal reaches of the Pearl River Estuary, China. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), pp.356-364.
  8. - Chenard, J.F. and Caissie, D., 2008. Stream temperature modelling using artificial neural networks: application on Catamaran Brook, New Brunswick, Canada. Hydrological Processes, 22(17), pp.3361-3372.
  9. - Curran, P.J. and Novo, E.M.M., 1988. The relationship between suspended sediment concentration and remotely sensed spectral radiance: a review. Journal of Coastal Research, pp.351-368.
  10. - de Carvalho, O.A., Guimarães, R.F., Silva, N.C., Gillespie, A.R., Gomes, R.A.T., Silva, C.R. and de Carvalho, A.P.F., 2013. Radiometric normalization of temporal images combining automatic detection of pseudo-invariant features from the distance and similarity spectral measures, density scatterplot analysis, and robust regression. Remote Sensing, 5(6), pp.2763-2794.
  11. - Dlamini, S., Nhapi, I., Gumindoga, W., Nhiwatiwa, T. and Dube, T., 2016. Assessing the feasibility of integrating remote sensing and in-situ measurements in monitoring water quality status of Lake Chivero, Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C
  12. - Huang, Y., Jiang, D., Zhuang, D. and Fu, J., 2010. Evaluation of hyperspectral indices for chlorophyll-a concentration estimation in Tangxun Lake (Wuhan, China). International journal of environmental research and public health, 7(6), pp.2437-2451.
  13. - Jensen, J.R., 2009. Remote sensing of the environment: An earth resource perspective 2/e. Pearson Education India.
  14. - Kabbara, N., Benkhelil, J., Awad, M. and Barale, V., 2008. Monitoring water quality in the coastal area of Tripoli (Lebanon) using high-resolution satellite data. ISPRS Journal of Photogrammetry and Remote Sensing, 63(5), pp.488-495.
  15. - Kumar, V., Sharma, A., Chawla, A., Bhardwaj, R. and Thukral, A.K., 2016. Water quality assessment of river Beas, India, using multivariate and remote sensing techniques. Environmental monitoring and assessment, 188(3), pp.1-10.
  16. - Lee, M.M., Keerthi, S.S., Ong, C.J. and DeCoste, D., 2004. An efficient method for computing leave-one-out error in support vector machines with Gaussian kernels. IEEE Transactions on Neural Networks, 15(3), pp.750-757
  17. - Lekutai, G., 1997. Adaptive self-tuning neuro wavelet network controllers. Virginia Polytechnic Institute PHD thesis, Blacksburg, Virginia
  18. - Liu, J., Zhang, Y., Yuan, D. and Song, X., 2015. Empirical Estimation of Total Nitrogen and Total Phosphorus Concentration of Urban Water Bodies in China Using High Resolution IKONOS Multispectral Imagery. Water, 7(11), pp.6551-6573.
  19. - Matsushita, B., Yang, W., Yu, G., Oyama, Y., Yoshimura, K. and Fukushima, T., 2015. A hybrid algorithm for estimating the chlorophyll-a concentration across different trophic states in Asian inland waters. ISPRS journal of photogrammetry and remote sensing, 102, pp.28-37.
  20. - Philpot, W. and Ansty, T., 2011, July. Analytical description of pseudo-invariant features (PIFs). In Analysis of Multi-temporal Remote Sensing Images (Multi-Temp), 2011 6th International Workshop on the (pp. 53-56). IEEE.
  21. - Song, K., Li, L., Wang, Z., Liu, D., Zhang, B., Xu, J., Du, J., Li, L., Li, S. and Wang, Y., 2012. Retrieval of total suspended matter (TSM) and chlorophyll-a (Chl-a) concentration from remote-sensing data for drinking water resources. Environmental monitoring and assessment, 184(3), pp.1449-1470.
  22. - Sudheer, K.P., Chaubey, I. and Garg, V., 2006. Lake water quality assessment from Landsat thematic mapper data using neural network: an approach to optimal band combination selection1. Jawra Journal of the American Water Resources Association, 42(6), pp.1683-1695.
  23. - Yu, Z., Chen, X., Tian, L., Yuan, X., Liu, H. and Wu, K., 2012. Remote sensing retrieval of turbidity near radial sand ridges area in the south yellow sea using HJ-1A/B CCD imagery. Future Control and Automation, pp.121-127.
  24. - ZENG, G.M., LU, H.W., JIN, X.C. and XU, M., 2005. Assessment of the Water Quality and Nutrition of the Dongting Lake with Wavelet Neural Network [J]. Journal of Hunan University (Natural Science), 1, p.020.