بررسی مقادیر رس با استفاده از طیف‌سنجی ابرطیفی آزمایشگاهی (LDRS)

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری فیزیک، حفاظت و فرسایش خاک، دانشگاه تربیت مدرس

2 استادیار سنجش از دور و علوم اطلاعات زمین، دانشگاه توئنته، هلند

3 استادیار پژوهشکدۀ حفاظت خاک و آبخیزداری

چکیده

بخش رس از مهم‌ترین اجزای بافت خاک است که در عملیات مدل­سازی زیست­محیطی2 و پهنه­بندی رقومی خاک3 بسیار مورد توجه است. ازآنجا­که این ویژگی از تغییرپذیری­های مکانی4 تأثیر می‌پذیرد، تشخیص و پهنه­بندی و پایش این پارامتر، در مقیاس وسیع و با روش­های نمونه­برداری سنتی و تحلیل آزمایشگاهی معمول، بسیار هزینه­بر و وقت­گیر است. بنابراین، تقاضا برای بررسی این­گونه اطلاعات با کیفیت خوب، هزینۀ کم و قدرت تفکیک (مکانی) مناسب، در مباحث و زمینه­هایی همچون کشاورزی دقیق5 (PA) و برنامه­ریزی اراضی6 (LP) بسیار زیاد شده است. با ظهور طیف­سنجی ابرطیفی آزمایشگاهی (LDRS) که براساس ارتعاشات بنیادین7 (FVs)، علائم ترکیبی8 و فرعی9 حاصل از گروه­های عاملی10 به تشخیص و بررسی اجزای خاک می­پردازد، روزنه­ای در بررسی این پارامتر خاک ایجاد کرده است. طی تحقیق حاضر، از طیف­سنجی بازتابی مجاورتی11 (PSS) برای بررسی مقادیر رس در قسمت­هایی از استان مازندران استفاده شده است. بدین‌ ترتیب، مجموع 128 نمونه از عمق 20 سانتیمتری سطح خاک و براساس روش نمونه­برداری طبقه­بندی‌شدۀ تصادفی12 (SRS) و نیز با کمک اطلاعات جانبی همچون: زمین­شناسی، کاربری ­اراضی، نقشۀ راه­ها، و خاک­شناسی استان جمع­آوری شد. در ابتدا، مجموع نمونه­ها به دو قسمت تقسیم شد: 96 نمونه برای ایجاد مدل (عملیات واسنجی13) و 32 نمونه برای اعتبارسنجی مستقل14 آن. با بهره­گیری از تحلیل رگرسیون چندمتغیرۀ 15PLSR و براساس تکنیک اعتبارسنجی متقاطع به روش حذف تکی16 (LOOCV) و عملیات پیش­پردازشی17 چون: میانگین­گیری18 (روش کاهش داده­های ابرطیفی19)، هموارسازی و مشتق اول طیفی براساس الگوریتم ساویتسکی- گولای20، درنهایت مدل کالیبراسیون با چهار فاکتور21 (LFs)، با RMSEC حدود 55/9 و R2C حدود 73/0 و نیز RPDC تقریبی 94/1 و RPIQC تقریبی 19/3 (ست کالیبراسیون)، به‌منزلۀ مطلوب­ترین مدل جهت برآورد مقادیر رس منطقۀ مورد مطالعه، شناخته شد که نتایج حاکی از توانایی مناسب مدل در برآورد رس منطقه بوده است. درنهایت، قابلیت فن­اوری طیف­سنجی بازتابی پراکنشی مرئی-فروسرخ نزدیک22 (VNIR-DRS)، در بررسی اجزای رسی منطقه، به اثبات رسید. همچنین، می‌شود این مدل و نیز دامنه­های طیفی مؤثر به‌دست‌آمده را جهت بررسی مقادیر رس در مقیاس بسیار وسیع، با عملیات بیش­مقیاس­سازی23 به‌وسیلۀ داده­های ابرطیفی هوایی-ماهواره­ای، مبنا قرار داد. این امر نشان‌دهندۀ اهمیت ابرطیف­سنجی آزمایشگاهی، همچون پایه­ای برای تشخیص باندهای طیفی مفید و نیز ایجاد مدل جهت استفادۀ آن در دورسنجی ابرطیفی است. 

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Clay Contents Using Lab Diffuse Reflectance Spectroscopy (Lab Hyperspectroscopy)

نویسندگان [English]

  • M Danesh 1
  • R Darvishzadeh 2
  • A.A Noroozi 3
1 PhD student, Soil Physics, Conservation and Erosion, Tarbiat Modares University
2 Assistant Prof., Faculty of Geo-Information Science and Earth Observation (ITC) University of Twente
3 Assistant Prof., Soil Conservation and Watershed Management Research Institute
چکیده [English]

Satellite image fusion and creating data with spectral and spatial capabilities greater than those of the existing data is of special interest and position in Remote Sensing. However, the accuracy and efficiency of all processing stages of using these data depend on the precision and reliability of the produced data. The optimum utilization of fused images relies, ultimately, on the precision of the employed fusion method. Evaluation of this important aspect requires selection of an optimum assessment metric which is appropriate for the objectives and application areas of fused images. Different application areas such as, natural resources, civil areas and etc. have different preferences with regard to maintaining the spectral and spatial data. Therefore, selection of the best fusion method, that is appropriate for the application area of the image, through image quality assessment metrics is one of the users’ challenges in this field. The present paper, thus, attempts to provide an analysis and assessment of 20 common image quality assessment methods so as to identify and introduce the most optimum metrics based on the area of application of fused images. It also tries to introduce the factors causing differences in the way quality is assessed by the metrics. And then present a model for identifying the capabilities of each metric for displaying the distortions that occur in the spectral and spatial aspects of data. To this end, two metrics of high-pass filter and spectral angle mapper are taken into consideration as spectral and spatial data comparison bases, and the performance of metrics with regard to their assessment of the quality of simulated data, that contain images with controlled spectral and spatial distortions, is evaluated. Spectral distortions were introduced by high-pass filter effect, band displacement and changing color tone. Low-pass filter and attrition filters with structural elements of different dimensions were also used for introducing spatial distortions. Due to offering different spectral and spatial resolutions, images from Landsat8, EO-1, and Angular Mapper method that are suitable for assessment of images with sensitive applications as they display the spectral distortions with greater precision; These methods include BIAS, RASE, Q, MSSIM, NQM, FSIM, SRSIM, and SAM indices. The third group is also compatible with high-pass filter of HPF, RFSIM and MAD that are of a greater capability for displaying spatial distortions.

کلیدواژه‌ها [English]

  • remote sensing
  • spectral angle mapper indecs
  • high-pass filter
  • spectral and spatial data
  1. Abdi, H., 2003, Partial Least Squares (PLS) Regression, In: Lewis-Beck, M., Bryman, A., Futing, T., (Eds.), Encyclopaedia for Research Methods for the Social Sciences, Vol. Sage Publications, Thousand Oaks, CA.
  2. Bachmann, C.M., Philpot, W., Abelev, A. & Korwan, D., 2014, Phase Angle Dependence of Sand Density Observable in Hyperspectral Reflectance, Remote Sensing of Environment, 150(2014): PP. 53–65.
  3. Baldock, J.A. & Skjemstad, J.O., 2000, Role of Soil Matrix and Minerals in Protecting Natural Organic Materials against Biological Attack, Organic Geochemistry, 31, PP. 697–710.
  4. Bellon-Maurel, V., Fernandez-Ahumada, E., Palagos, B., Roger, J.M. & McBratney, A., 2010, Critical Review of Chemometric Indicators Commonly Used for Assessing the Quality of the Prediction of Soil Attributes by NIR spectroscopy, Trends Anal. Chem., 29 (9), PP. 1073–1081.
  5. Bellon-Maurel, V. & McBratney, A., 2011, Near-Infrared (NIR) and Mid-Infrared (MIR) Spectroscopic Techniques for Assessing the Amount of Carbon Stock in Soils Critical Review and Research Perspectives, Soil Biol. Biochem., 43(7), PP. 1398-1410.
  6. Ben-Dor, E., Taylor, R.G., Hill, J., Dematteˆ, J.A.M., Whiting, M.L., Chabrillat, S. & Sommer, S., 2008, Imaging Spectrometry for Soil Applications, Advances in Agronomy, Vol. 97, No. 2008, Elsevier Inc.
  7. Ben-Dor, E., Heller, D. & Chudnovsky, A., 2008a, A Novel Method of Classifying Soil Profiles in the Field Using Optical Means, Soil.Sci.Soc.Am.J., 72, PP. 1113–1123.
  8. ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
  9. whole spectrum key-wavelengths
  10. VNIR proximal spectroscopy
  11. scaling-up stage
  12. Ben-Dor, E. & Banin, A., 1995, Near Infrared Analysis (Nira) as a Method to Simultaneously Evaluate Spectral Featureless Constituents in Soils, Soil.Sci., 159(4), PP. 259–270.
  13. Bishop, J.L., Pieters, C.M. & Edwards, J.O., 1994, Infrared Spectroscopic Analyses on the Nature of Water in Montmorillonite, Clays and Clay Miner. 42(6), PP. 702–716.
  14. Bresson, L.M., Le Bissonnais, Y., Andrieux, P., 2006, Soil surface crusting and structure slumping in Europe, In: Boardman, J., Poesen, J.(Eds.), Soil Erosion in Europe, Wiley & Sons Ltd, West Sussex, pp. 489–500.
  15. Bricklemyer, R.S. & Brown, D.J., 2010, On-the-go VisNIR: Potential and Limitations for Mapping Soil Clay and Organic Carbon, Comput.Electron.Agric., 70, PP. 209–216.
  16. Camargo, O.A., Moniz, A.C., Jorge, J.A. & Valadares, J.M., 2009, Methods of Chemical, Mineralogical and Physical Analysis of Soils Used in the Pedology Section (Technical Bulletin n.106), Instituto Agronômico (IAC), Campinas.
  17. Casa, R., Castaldi, F., Pascucci, S., Palombo, A. & Pignatti, S., 2013, A Comparison of Sensor Resolution and Calibration Strategies for Soil Texture Estimation from Hyperspectral Remote Sensing, Geoderma, 197–198, PP. 17–26.
  18. Chang, C.W., Laird, D.A., Mausbach, M.J. & Hurburgh, C.R., 2001, Near-Infrared Reflectance Spectroscopy-Principal Com-ponents Regression Analyses of Soil Pro-perties, Soil Sci.Soc. Am. J., 65, PP. 480–490.
  19. Chang, C.W.& Laird, D.A., 2002, Near-Infrared Reflectance Spectroscopy Analysis of Soil C and N, Soil Science, 167, PP. 110–116.
  20. Conforti, M., Buttafuoco, G., Leone, A.P., Aucelli, P.P.C., Robustelli, G. & Scarciglia, F., 2013, Studying the Relationship between Water-Induced Soil Erosion and Soil Organic Matter Using Vis–NIR Spectroscopy and Geomorphological Analysis: A Case Study in Southern Italy, Catena, 110, PP. 44–58.
  21. Cook, R. & Weisberg, S., 1982, Residuals and Influence in Regression, John Wiley & Sons, New York.
  22. Cozzolino, D. & Moron, A., 2003, The Potential of Near-Infrared Reflectance Spectroscopy to Analyse Soil Chemical and Physical Characteristics, Journal of Agricultural Sciences, 140, PP. 65– 71.
  23. Curcio, D., Ciraolob, G., D’Asaroa, F. & Minacapillia, M., 2013, Prediction of Soil Texture Distributions Using VNIR-SWIR Reflectance Spectroscopy, Procedia Envi-ronmental Sciences, 19, PP. 494 – 503.
  24. Darvishzadeh, R., Atzberger, C., Skidmore, A. & Schlerf, M., 2011, Mapping Grassland Leaf Area Index with Airborne Hyperspectral Imagery: A Comparison Study of Statistical Approaches and Inversion of Radiative Transfer Models. ISPRS Journal of Photo-grammetry and Remote Sensing, 66, PP. 894–906.
  25. Demattê, J.A.M., 2002, Characterization and Discrimination of Soils by their Reflected Electromagnetic Energy, Braz.J.Agric.Res., 37, PP. 1445–1458.
  26. Demattê, J.A.M. & Terra, F.S., 2014, Spectral Pedology: A New Perspective on Evaluation of Soils along Pedogenetic Alterations, Geoderma 217–218, PP. 190–200.
  27. Dunn, B.W., Beecher, H.G., Batten, G.D. & Ciavarella, S., 2002, The Potential for Nearreflectance Spectroscopy for Soil Analysis—A Case Study from the Riverine Plain of South-Eastern Australia, Australian Journal of Experimental Agriculture 42, PP. 607–614.
  28. Ge, Y., Thomasson, J.A. & Morgan, C.L.S., 2014, Mid-Infrared Attenuated Total Reflectance Spectroscopy for Soil Carbon and Particle Size Determination, Geoderma 213, PP. 57–63.
  29. Geladi, P. & Kowalski, B.R., 1986, Partial Least-Squares Regression: A Tutorial, Analytica Chimica Acta, 185, PP. 1–17.
  30. Gomez, C., Le Bissonnais, Y., Annabi, M., Bahri, H. & Raclot, D., 2013, Laboratory Vis–NIR Spectroscopy as an Alternative Method for Estimating the Soil Aggregate Stability Indexes of Mediterranean Soils, Geoderma, 209–210, PP. 86–97.
  31. Gras, J.P., Barthès, B.G., Mahaut, B. & Trupin, S., 2014, Best Practices for Obtaining and Processing Field Visible and Near Infrared (VNIR) Spectra of Topsoils, Geoderma, 214–215, PP. 126–134.
  32. Greve, M.H., Kheir, R.B., Greve, M.B. & Bocher, P.K., 2012, Quantifying the Ability of Environmental Parameters to Predict Soil Texture Fractions Using Regression-Tree Model with GIS and LIDAR Data: The Case Study of Denmark, Ecological Indicators, 18, PP. 1–10.
  33. Hartemink, A.E. & Minasny, B., 2014, Towards Digital Soil Morphometrics, Geoderma, 230–231, PP. 305–317.
  34. Hillel, D., 1980, Applications of Soil Physics, Academic Press Inc.
  35. Hillel, D., 2004, Introduction to Environmental Soil Physics, Elsevier Academic Press, New York. ISBN: 0-12-348655-6, PP. 494.
  36. Huang, X.W., Senthilkumar, S., Kravchenko, A., Thelen, K. & Qi, J.G., 2007, Total Carbon Mapping in Glacial till Soils Using Near-Infrared Spectroscopy, Landsat Imagery and Topographical Information, Geoderma. 141, PP. 34–42.
  37. Islam, K., Singh, B. & McBratney, A., 2003, Simultaneous Estimation of Several Soil Properties by Ultra-Violet, Visible, and Near-Infrared Reflectance Spectroscopy, Soil Res., 41(6), PP. 1101–1114.
  38. Janik, L.J. & Skjemstad, J.O., 1995, Charac-terisation and Analysis of Soils Using Mid-Infrared Partial Least Squares. II. Correlations with Laboratory Data, Austra-lian Journal of Soil Research, 33, PP. 637–650.
  39. Jindaluang, W., Kheoruenromne, I., Suddhiprakarn, A., Singh, B.P. & Singh, B., 2013, Influence of Soil Texture and Mineralogy on Organic Matter Content and Composition in Physically Separated Fractions Soils of Thailand, Geoderma, 195–196, PP. 207–219.
  40. Kagan, T.P., Shachak, M., Zaady, E. & Karnieli, A., 2014, A Spectral Soil Quality Index (SSQI) for Characterizing Soil Function in Areas of Changed Land Use, Geoderma, 230–231, PP. 171–184.
  41. Khorram, S., Nelson, S.A.C. & Koch, F.H., 2012, Remote Sensing, Springer.
  42. Kuang, B., Mahmood, H.S., Quraishi, M.Z., Hoogmoed, W.B., Mouazen, A.M. & Van Henten, E.J., 2012, Sensing Soil Properties in the Laboratory, In Situ, and On-Line: A Review: Advances in Agronomy, Vol. 114, No. 2012, Elsevier Inc.
  43. Lagacherie, P., Baret, F., Feret, J.B., Madeira Netto, J. & Robbez-Masson, J.M., 2008, Estimation of Soil Clay and Calcium Carbonate Using Laboratory, Field and Airborne Hyper-spectral Measurements, Remote Sens. Environ., 112(3), PP. 825–835.
  44. Li, D., Durand, M. & Margulis, S.A., 2012, Potential for Hydrologic Characterization of Deep Mountain Snowpack via Passive Microwave Remote Sensing in the KernRiver Basin, Sierra Nevada, USA, Remote Sensing Environment, 125, PP. 34–48.
  45. Lu, P., Wang, L., Niu, Z., Li, L. & Zhang, W., 2013, Prediction of Soil Properties Using Laboratory VIS–NIR Spectroscopy and Hyperion Imagery, Journal of Geochemical Exploration, 132, PP. 26–33.
  46. Matney, T., Barrett, L.R., Dawadi, M.B., Maki, D., Maxton, C., Perry, D.S., Roper, D.C., Somers, L. & Whitman, L.G., 2014, In Situ Shallow Subsurface Reflectance Spectroscopy of Archaeological Soils and Features: A Case-Study of Two Native American Settlement Sites in Kansas, Journal of Archaeological Science, 43, PP. 315-324.
  47. McBratney, A.B., Mendonca Santos, M.L. & Minasny, B., 2003, On Digital Soil Mapping, Geoderma 117, PP. 3–52.
  48. McDowell, M.L., Bruland, G.L., Deenik, J.L., Grunwald, S. & Knox, N.M., 2012, Soil Total Carbon Analysis in Hawaiian Soils with Visible, Near-Infrared and Mid-Infrared Diffuse Reflectance Spectroscopy, Geoderma, 189–190, PP. 312–320.
  49. Minasny, B. & Hartemink, A.E., 2011, Predicting Soil Properties in the Tropics, Earth-Science Reviews, 106, PP. 52–62.
  50. Nocita, M., Stevens, A., Noon, C. & Wesemael, B.V., 2013, Prediction of Soil Organic Carbon for Different Levels of Soil Moisture Using Vis-NIR Spectroscopy, Geoderma, 199, PP. 37–42.
  51. Quan, S.Z., Jie, S.Y., Li, P. & Gen, J.Y., 2013, Mapping of Total Carbon and Clay Contents in Glacial Till Soil Using On-the-Go Near-Infrared Reflectance Spectroscopyand Partial Least Squares Regression, Pedos-phere, 23(3), PP. 305–311.
  52. Rawlins, B.G., Kemp, S.J. & Milodowski, A.E., 2011, Relationships between Particle Size Distribution and VNIR Reflectance Spectra are Weaker for Soils Formed from Bedrock Compared to Transported Parent Materials, Geoderma, 166, PP. 84–91.
  53. Rodger, A., Laukamp, C., Haest, M. & Cudahy, T., 2012, A Simple Quadratic Method of Wavelength Tracking for Absorption Features in Continuum Removed Spectra, Remote Sensing of Environment, 118, PP. 273–283.
  54. Sawut, M, Ghulam, A., Tiyip, T., Zhang, Y.J., Ding, J.L., Zhang, F. & Maimaitiyiming, M., 2014, Estimating Soil Sand Content Using Thermal Infrared Spectra in Arid Lands, International Journal of Applied Earth Observation and Geoinformation, 33, PP. 203–210.
  55. Shepherd, K.D. & Walsh, M.G., 2002, Development of Reflectance Spectral Libraries for Characterization of Soil Properties, Soil Science Society of America Journal, 66, PP. 988–998.
  56. Shrestha, D.P., Margate, D.E., van der Meer, F. & Anh, H.V., 2005, Analysis and Classification of Hyperspectral Data for Mapping Land Degradation: An Application in Southern Spain, International Journal of Applied Earth Observation and Geoinformation, 7, PP. 85–96.
  57. Small, C., Steckler, M., Seeber, L., Akhter, S.H., Goodbred Jr., S., Mia, B. & Imam, B., 2009, Spectroscopy of Sediments in the Ganges–Brahmaputra Delta: Spectral Effects of Moisture, Grain Size and Lithology, Remote Sensing of Environment, 113, PP. 342–361.
  58. Stenberg, B., Viscarra Rossel, R.A., Mouazen, A.M. & Wetterlind, J., 2010, Visible and Near Infrared Spectroscopy in Soil Science, In: Sparks, D.L.(Ed.), Advances in Agronomy, pp. 163-215.
  59. Stevens, A., Udelhoven, T., Denis, A., Tychon, B., Lioy, R., Hoffman, L. & Van Wesemael, B., 2010, Measuring Soil Organic Carbon in Croplands at Regional Scales Using Imaging Spectroscopy, Geoderma, 158, PP. 32–45.
  60. Summers, D., Lewis, M., Ostendorf, B. & Chittleborough, D., 2011, Visible Near-Infrared Reflectance Spectroscopy as a Predictive Indicator of Soil Properties, Ecological Indicators, 11, PP. 123–131.
  61. Vašat, R., Kodešova, R., Borůvka, L., Klement, A., Jakšik, O. & Gholizadeh, A., 2014, Consideration of Peak Parameters Derived from Continuum-Removed Spectra to Predict Extractable Nutrients in Soils with Visible and Near-Infrared Diffuse Reflectance Spectroscopy (VNIR-DRS), Geoderma, 232–234, PP. 208–218.
  62. Viscarra Rossel, R.A., Walvoort, D.J.J., McBratney, A.B., Janik, L.J. & Skjemstad, J.O., 2006b, Visible, Near Infrared, Mid Infrared or Combined Diffuse Reflectance Spectroscopy for Simultaneous Assessment of Various Soil Properties, Geoderma, 131, PP. 59–75.
  63. Viscarra Rossel, R.A., Chappell, A., de Caritat, P. & McKenzie, N.J., 2011, On the Soil Information Content of Visible-Near Infrared Reflectance Spectra, Eur.J.Soil Sci., 62, PP. 442-453.
  64. Viscarra Rossel, R.A., McGlynn, R.N. & McBratney, A.B., 2006a, Determining the Composition of Mineral-Organic Mixes Using UV-vis-NIR Diffuse Reflectance Spectroscopy, Geoderma, 137, PP. 70–82.
  65. Viscarra Rossel, R.A., McBratney, A.B. & Minasny, B., 2010, Proximal Soil Sensing, Springer, New York.
  66. Vohland, M., Ludwig, M., Thiele-Bruhn, S. & Ludwig, B., 2014, Determination of Soil Properties with Visible to Near- and Mid-Infrared Spectroscopy: Effects of Spectral Variable Selection, Geoderma, 223–225, PP. 88–96.
  67. Vohland, M., Besold, J., Hill, J. & Fründ, H.C., 2011, Comparing Different Multivariate Calibration Methods for the Determination of Soil Organic Carbon Pools with Visible to Near Infrared Spectroscopy, Geoderma 166, PP. 198–205.
  68. Volkan Bilgili, A., van Es, H.M., Akbas, F., Durak, A. & Hively, W.D., 2010, Visible-Near Infrared Reflectance Spectroscopy for Assessment of Soil Properties in a Semi-Arid Area of Turkey, Journal of Arid Environments, 74, PP. 229–238.
  69. Waiser, T.H., Morgan, C.L.S., Brown, D.J. & Hallmark, C.T., 2007, In Situ Characterization of Soil Clay Content with Visible Near-Infrared Diffuse Reflectance Spectroscopy, Soil Sci. Soc. Am. J., 71, PP. 389–396.
  70. Wang, Q., Li, P. & Chen, X., 2012, Modeling Salinity Effects on Soil Reflectance under Various Moisture Conditions and its Inverse Application: A Laboratory Experiment, Geoderma, 170, PP. 103–111.
  71. Xu, L., Xie, D. & Fan, F., 2011, Effects of Pretreatment Methods and Bands Selection on Soil Nutrient Hyperspectral Evaluation, Procedia Environmental Sciences, 10, PP. 2420 – 2425.
  72. Zhu, Y., David C.W. & Zhang, W., 2011, Characterizing Soils Using a Portable X-ray Fluorescence Spectrometer-1. Soil Texture, Geoderma, 167–168, PP. 167–177.