Study of Spatial and Temporal Characteristics of ETo and Temperature in Khorasan Razavi Province Using CRU TS Dataset and Their Future Projections Based on CMIP5 Climate Models

Document Type : Original Article

Authors

1 Assistance Prof. of Climatological and Climate Change Research Institute (CRI)

2 Assistance Prof., Faculty of Agriculture and Animal Science, Torbat-e Jam Educational Complex, khorasan Razavi

3 Member of Applied Climatology Research Group, Climatological and Climate Change Research Institute

4 Associate Prof, Head of Applied Climatology Research Group, Climatological and Climate Change Research Institute

Abstract

Evapotranspiration is significantly affected by global climate changes as an essential component of both climate and hydrological cycles. Comprehensive analyses of the spatiotemporal changes of ETo enhance the understanding of hydrological processes and improve water resource management. The main objective of this study is to investigate and predict the temporal trend and spatial distributions of the mean maximum temperature (Tmax), the mean minimum temperature (Tmin) and reference evapotranspiration (ETo) during 1961-2014, 2021-2050 and 2051-2080 over Khorasan Razavi Province using CRUTS3.23 dataset and the outputs of four CMIP5 climate models. The results were as follows: (i) the ability of CRU dataset in simulating monthly mean of Tmax and Tmin is suitable, (ii) generally, ETo increased from north to south across the province (ii) from 1961 to 2014, annual ETo exhibited an increasing continuous trend across the area under study (iii) the mean annual minimum temperature projected to increase by 1.6 under RCP4.5 and RCP8.5 scenarios during two future periods. During 2051-2080, this variable will have an increase by 3ᵒ C under RCP8.5 scenario. The maximum temperature will increase by 4ᵒ C during the middle future period under RCP8.5 scenario. (v) The difference between mean annual ETo values of two periods was statistically significant in all grid points covering this province. The results showed that these increases may lead to the increase in crop water requirements and aggravate the water shortage in this area in view of the increase in ETo in response to ongoing climate change. 

Keywords


بابائیان، ا.، کوهی، م.،1391، ارزیابی شاخص‌های اقلیم کشاورزی تحت سناریوهای تغییر اقلیم در ایستگاه‌های منتخب خراسان رضوی،  آب و خاک (علوم و صنایع کشاورزی)، دورة 26، شمارة 4، صص. 967-953.
حسینی موغاری، م.، عراقی‌نژاد، ش.، ابراهیمی، ک.، 1396، بررسی دقت اطلاعات بارش شبکه‌بندی‌شدة جهانی در حوضة دریاچة ارومیه، تحقیقات آب و خاک ایران، دورة 48، شمارة 3، صص. 598-587.
زارع ابیانه، ح.، افروزی، ع.، میرزائی، م.، باقری، ح.، 1394، پیش‌بینی تبخیرـ تعرق مرجع ماهانه با استفاده از مدل سری‌های زمانی، آب و خاک، جلد 30، شمارة 1، صص. 111-99.
سبزی پرور، ع.ا.، شادمانی، م.، 1390، تحلیل روند تبخیر و تعرق مرجع با استفاده از آزمون من‌ـ کندال و اسپیرمن در مناطق خشک ایران، دانش آب و خاک، جلد 25، شمارة 4، صص. ۸۲۳ تا ۸۳۴.
سیاری، ن.، علیزاده، ا.، بنایان اول، م.، فریدحسینی، ع.، حسامی کرمانی، م.، 1390، مقایسة دو مدل گردش عمومی جو (HadCM3, CGCM2) در پیش‌بینی پارامترهای اقلیمی و نیاز آبی گیاهان تحت تغییر اقلیم (مطالعة موردی: حوضة کشف‌رود)، آب و خاک، جلد ۲۵، شمارة 4، صص ۹۱۲-۹۲۵.
طلاتپه، ن.، بهمنش، ج.، منتظری، م.، 1392، پیش‌بینی تبخیرـ تعرق پتانسیل با استفاده از مدل‌های سری زمانی (مطالعة موردی: ارومیه)، آب وخاک، جلد 27، شمارة 1، صص. 223-213.
عینی، م.ر.، جوادی، س.، دلاور، م.، 1397، ارزیابی عملکرد داده‌های بازتحلیل‌شدة پایگاه‌های اقلیمی جهانی CRU و NCEP CFSR در شبیه‌سازی‌ هیدرولوژیکی مدلSWAT ، مطالعة موردی: حوضة آبریز مهارلو، تحقیقات منابع آب ایران، دورة 14، شمارة 1، صص. 32-44.
 
Ahmadi, H., Baaghideh, M., 2018, Impacts of climate change on apple tree cultivation areas in Iran, Climatic Change, 153, PP.91–103.
Allen, R.G., Pereira, L.S., Dirk, R. & Smith, M., 1998, Crop Evapotranspiration Guidelines for Computing Crop Water Requirements, FAO Irrigation and Drainage Paper, No. 56. Rome, Italy, PP. 103-156.
Doorenbos, J. & Pruit, W.O., 1977, Guidelines for Predicting Crop Water Requirements, FAO Irrigation and Drainage Paper, 24.
Elmahdi, A., Shahkarami, N., Morid, S. & Massah Bavani, A.R., 2009, Assessing the Impact of AOGCMs Uncertainty on the Risk of Agricultural Water Demand Caused by Climate Change, 18th World IMACS/ MODSIM Congress, Cairns, Australia, PP. 13-17.
Giorgi, F., 1990, Simulation of Regional Climate Using a Limited Area Model Nested in a General Circulation Model, Journal of Climate, 3(9), PP. 941-963.
Hargreaves, G.H. & Samani, Z.A., 1982, Estimating Potential Evapotranspira-tion, Journal of Irrigation and Drainage Engineering, 108, PP. 225-230.
Hessami, M., Gachon, P., Ouarda, T.B.M.J. & St-Hilaire A., 2008, Automated Regression-based Statistical Downscal-ing Tool,Environmental Modelling and Software, 23, PP. 813-834.
Intergovernmental Panel on Climate Change, 2007, Climate Change 2007: The Physical Science Basis / Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, UK, New York, USA, PP. 24-57.
 
Intergovernmental Panel on Climate Change, 2013, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovern-mental Panel on Climate Change, Cambridge Univ. Press, Cambridge.
Meinshausen, N., Hare, W., Raper, S.C.B., Frieler, K., Knutti, R., Frame, D.J. & Allen, M.R., 2009, Greenhouse-gas Emission Targets for LimitingGlobal Warming to 2 C, Nature, 458, PP. 1158-1162.
Novotny, E.V. & Stefan, H.G., 2007, Stream Flow in Minnesota: Indicator of Climate Change, Journal of Hydrology, 334, PP. 319-333.
Reclamation, 2013, Downscaled CMIP3 and CMIP5 Climate Projections: Release of Downscaled CMIP5 Climate Projections, Comparison with Preceding Information, and Summary of User Needs, U.S. Department of the Interior, Bureau of Reclamation, Technical Service Center, Denver, Colorado, 116 p., available at: http://gdo­dcp.ucllnl.org/downscaled_cmip_projections/techmemo/downscaled_c limate.pdf.
Semenov, M., 2008, Simulation of Extreme Weather Events by a Stochastic Weather Generator, Climate Research, 35,PP. 203-212.
Semenov, M.A. & Brooks, R.J., 1999, Spatial Interpolation of the LARS-WG Stochastic Weather Generator in Great Britain, Climate Research, 11, PP. 137-148.
Sen, P.K., 1968, Estimates of the Regression Coefficient Based on Kendall's tau, Journal of the American Statistical Association, 63, PP.1379-1389.
Shi, H., Li, T. & Wei, J., 2017, Evaluation of the Gridded CRU TS Precipitation Dataset with the PointRain Gauge Records over the Three-River Head-waters Region,  Journal of Hydrology, 548, PP. 322-332.
Taylor, K.E., 2001, Summarizing Multiple Aspects of Model Performance in a Single Diagram, Journal of Geophysical Research, 106, PP. 7183-7192.
Taylor, K.E., Stouffer, R.J. & Meehl, G.A., 2012, An Overview of CMIP5 and the Experiment Design, Bulletin of the American Meteorological Society, 93, PP. 485-498.
Theil, H., 1950, A Rank-invariant Method of Linear and Polynomial Regression Analysis, I. Nederlands Akad, Wetensch. Proc. 53, PP. 386-392.
Thornthwaite, C.W., 1948, An Approach Toward a Rational Classification of Climate, Geographical Review, 38, PP. 55-94.
Wang, Z., Xie, P., Lai, C., Chen, X., Wu, X., Zeng, Z. & Li, Z., 2017, Spatiotemporal Variability of Reference Evapotrans-piration and Contributing Climatic Factors in China During 1961-2013, Journal of Hydrology, 544, PP. 97-108.
Wilby, R.L., Dawson, C.W. & Barrow, E.M., 2001, A Decision Support Tool for the Assessment of Regional Climate Change Impacts, Journal of Environ-mental Modeling and Software, 17, PP. 147-159.
Zhao, T. & Fu, C., 2006, Comparison of Products from ERA40, NCEP-2, and CRU with Station Data for Summer Precipitation over China, Advances in Atmospheric Sciences, 23, PP. 593-604.