ارزیابی و مقایسة رضایت عمومی مردم در استان‌های ایران، به‌کمک داده‌های مکانی مردم‌ساخت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه صنعتی خواجه نصیرالدین طوسی

2 استاد گروه GIS، دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده

شاخص‌های متعددی مبتنی‌بر استفاده از روش‌های رایج و معمول اخذ داده، ازجمله استفاده از پرسشنامه برای سنجش رضایت عمومی، مطرح شده است. وجود چالش‌ها و مشکلات متعدد، همچون پرهزینه و زمان‌بربودن این روش‌ها، به‌خصوص در مناطق دارای گسترة وسیع جغرافیایی، مانند یک کشور، باعث شده است مقادیر شاخص‌های مرتبط در این زمینه به‌روز نباشند. رضایت عمومی مفهومی پویا و چندبُعدی است و در طی زمان، تغییر می‌کند؛ بنابراین، ضروری است در دوره‌های زمانی مناسب ارزیابی شود. ازآنجاکه در سال‌های اخیر رویکرد گسترده‌ای به‌سمت کاربرد داده‌ها‌ی مکانی مردم‌ساخت شکل گرفته است، در این تحقیق به‌کمک داده‌های شبکة‌ اجتماعی مکان‌مبنا، با طرح دیدگاهی جدید، اطلاعات و معیارهایی که می‌توانند منعکس‌کنندة رضایت عمومی باشند استخراج شده و در نهایت، با درنظرگرفتن عدم قطعیت در مفهوم رضایت عمومی و داده‌های ورودی، از یک سیستم استنتاج‌گر فازی برای ارزیابی و مقایسة رضایت عمومی در استان‌های ایران استفاده شده است. شاخص‌های استخراج‌شده در این تحقیق نسبت توئیت‌های دارای تمایل منفی به مثبت، نسبت توئیت‌های دارای احساس شادی و لذت و نسبت توئیت‌های شامل احساس ناراحتی و عصبانیت و ترس به کل توئیت‌ها را دربر می‌گیرند. نتایج حاصل از روش پیشنهادی منجر به دسته‌بندی استان‌های کشور از وضعیت مطلوب تا نامطلوب شد. نتایج این تحقیق وجود پتانسیل داده‌های مردم‌ساخت را، در ارزیابی رضایت عمومی، بیشتر در نقش دادة مکمل و نه به‌منزلة جایگزین داده‌های رسمی، نشان داد. روش پیشنهادی در این تحقیق گامی به‌سوی ارزیابی رضایت عمومی، با استفاده از داده‌های به اشتراک گذاشته‌شدة مردم در شبکه‌های اجتماعی مکانی محسوب می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation and Comparison of Public Satisfaction in Iranian Provinces Using User Generated Geo-Content (UGGC)

نویسندگان [English]

  • Ghasem Javadi 1
  • Mohammad Taleai 2
1 K. N. Toosi University of Technology
2 K. N. Toosi University of Technology
چکیده [English]

Public satisfaction is a multidimensional and dynamic concept that changes over time, so it must be evaluated at appropriate times. A major challenge for this evaluation, especially in large geographical areas such as one country, is the lack of regular procedures and updated relevant index values. In recent years, several indicators have been presented based on traditional methods of data collection, including the use of questionnaires, to measure public satisfaction. Since, in recent years, the use of User Generated Geo-Content (UGGC) has been widely considered, in this research, with a new perspective by using of location-based social networks (LBSNs), extraction of information and criteria that can somehow reflect public satisfaction has been done. Finally, considering the uncertainties in the input data and the definition of public satisfaction, a fuzzy inference system was used to evaluate and compare public satisfaction in Iranian provinces. The extracted indices in this study, include negative/positive tweet ratio, the ratio of joy and love tweets to all tweets, and the ratio of sadness, anger and fear tweets to all tweets. The results of the proposed method resulted in the classification of the provinces of Iran from favorable to unfavorable situations. The results of this study demonstrated the potential of UGGC for public satisfaction assessment in the role of complementary data rather than as an alternative to official data. The proposed method in this study is a step towards evaluating public satisfaction using data shared by users on location-based social networks.

کلیدواژه‌ها [English]

  • Location-based social networks
  • Twitter
  • Fuzzy Inference System
  • Geospatial analysis
ابراهیم‌زاده، ع.، رحمانی، ا.، 1397، ارزیابی کیفیت زندگی ذهنی‌ـ ادراکی در مناطق شهری و تبیین عوامل مؤثر بر آن، مطالعه موردی: شهر کنارک، فصلنامة شهر پایدار، دورة 1، شمارة 3، صص. 64-51.‎
احدنژاد، م.، نجفی، س.، 1394، سنجش کیفیت ذهنی زندگی در محلات شهری با استفاده از مدل‌های تصمیم‌گیری چندمعیاره (مطالعة موردی: محلات کارمندان و اسلام‌آباد شهر زنجان)، پژوهش و برنامه‌ریزی شهری، دورة 6، شمارة 23، صص. 20-1.‎
تقوایی، ع.ا.، رفیعیان م.، سلمانی، ح.، 1393، سنجش و بررسی کیفیت زندگی ذهنی بر اساس ادراک ساکنان (نمونه موردی محله هاشمی در منطقه 10 تهران). جغرافیا و برنامه‌ریزی، دورة 18، شمارة 50، صص. 105-89.
حسینی عباس‌آبادی، م.، طالعی، م.، 1396، ارزیابی کیفیت زندگی شهری مبتنی‌بر داده‌های آماری و مکانی، علوم و فنون نقشه‌برداری، دورة 6، شمارة 4، صص. 55-41.
خادم‌الحسینی، ا.، منصوریان، ح. ستاری، م.ح.، 1389، سنجش کیفیت ذهنی زندگی در نواحی شهری (مطالعة موردی: شهر نورآباد، استان لرستان)، جغرافیا و مطالعات محیطی، دورة 1، شمارة 3، صص. 60-45.
خواجه شاهکوهی، ع.ر.، مهدوی، ش.، سوری، ف.، صمدی، ر.، 1391، ارزیابی و سنجش شاخص‌های ذهنی کیفیت زندگی شهری؛ مطالعة موردی: شهر کاشان، مدیریت شهری، دورة 10، شمارة 30، صص. 296-285.گزارش پایششاخص‌هایملیمحیطکسب وکاردرراستای سنجشوارتقایبهره‌وری، 1396، وزارت اقتصاد، ایران.
محمدی ، ج.، حسینی‌خواه، ح.، محمدی‌دوست، س.، 1395، سنجش میزان رضایت از کیفیت زندگی در نواحی شهری با استفاده از تکنیک روش تشابه به گزینة ایده‌آل فازی (مطالعة موردی: شهر دوگنبدان)، آمایش محیط، دورة 9، شمارة 35، صص. 22-1.‎
محمودی‌آذر، ا.، هاشم‌پور، ر.، فؤادمرعشی، س.م.، 1396، تحلیلی بر تعامل کیفیت زندگی عینی و ذهنی برمبنای دسترسی به خدمات عمومی در بافت تاریخی شهر ارومیه، تحقیقات کاربردی علوم جغرافیایی، سال 17، شمارة 45، صص. 225-207.
منتظری، ع.، امیدواری، س.، آذین، س.ع. و همکاران، 1391، میزان شادکامی مردم ایران و عوامل مؤثر بر آن: مطالعة سلامت از دیدگاه مردم ایران، پایش، دورة ۱۱، شمارة ۴، صص. ۴75-۴67.
مؤذنی، ا.، علیزاده اقدم، م.، 1391، بررسی کیفیت زندگی شهری: مدلی برای سنجش و رتبه‌بندی استان‏‌ها‏ی ایران با استفاده از تحلیل خوشه‏‌ای، جامعه‌شناسی ایران، سال 13، شمارة 3، صص. 174-149.
 
Allen, C., Tsou, M.H., Aslam, A., Nagel, A. & Gawron, J.M., 2016, Applying GIS and Machine Learning Methods to Twitter Data for Multiscale Surveillance of Influenza, PloS One, 11(7), e0157734.doi: 10.1371/journal.pone.0157734.
Batty, M., Axhausen, K.W., Giannotti, F., Pozdnoukhov, A., Bazzani, A., Wachowicz, M., Ouzounis, G. & Portugali, Y., 2012, Smart Cities of the Future, The European Physical Journal Special Topics, 214(1), PP. 481-518.
Bollegala, D., Weir, D. & Carroll, J., 2012, Cross-Domain Sentiment Classification Using a Sentiment Sensitive Thesaurus, IEEE Transactions on Knowledge and Data Engineering, 25(8), PP. 1719-1731.
Bougouffa, I. & Permana, A.S., 2018, A Study on the Linkages between Residential Satisfaction and the Overall Quality of Life in Bandar Tun Razak Area of Kuala Lumpur City, Malaysia, Applied Research in Quality of Life, 13(4), PP. 991-1013.
Calefato, F., Lanubile, F., Maiorano, F. & Novielli, N., 2018, Sentiment Polarity Detection for Software Development, Empirical Software Engineering, 23(3), PP. 1352-1382.
Calefato, F., Lanubile, F. & Novielli, N., 2017, EmoTxt: A Toolkit for Emotion Recognition from Text, In 2017 Seventh International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), PP. 79-80, IEEE.
Calvo, R.A. & Mac Kim, S., 2013, Emotions in Text: Dimensional and Categorical Models,Computational Intelligence, 29(3), PP. 527-543.
Carlquist, E., Ulleberg, P., Delle Fave, A., Nafstad, H.E. & Blakar, R.M., 2017, Everyday Understandings of Happiness, Good Life, and Satisfaction: Three Different Facets of Well-Being, Applied Research in Quality of Life, 12(2), PP. 481-505.Chopade, C.R., 2015, Text Based Emotion Recognition: A Survey, International Journal of Science and Research, 4(6), PP. 409-414.
Curini, L., Iacus, S. & Canova, L., 2015, Measuring Idiosyncratic Happiness through the Analysis of Twitter: An Application to the Italian Case, Social Indicators Research, 121(2), PP. 525-542.
Devika, M.D., Sunitha, C. & Ganesh, A., 2016, Sentiment Analysis: A Compara-tive Study on Different Approaches, Procedia Computer Science, 87, PP. 44-49.
Dodds, P.S., Harris, K.D., Kloumann, I.M., Bliss, C.A. & Danforth, C.M., 2011, Temporal Patterns of Happiness and Information in a Global Social Network: Hedonometrics and Twitter, PloS One, 6(12), e26752.https://doi.org/ 10.1371/journal.pone.0026752.
Funayama, T., Yamamoto, Y., Tomita, M., Uchida, O. & Kajita, Y., 2014, Disaster Mitigation Support System Using Twitter and GIS, In 2014 Twelfth International Conference on ICT and Knowledge Engineering (PP. 18-23), IEEE.
Goodchild, M.F., 2007, Citizens as Sensors: The World of Volunteered Geography, GeoJournal, 69, PP. 211-221.
Hao, B., Li, L., Gao, R., Li, A. & Zhu, T., 2014, Sensing Subjective Well-Being from Social Media, In International Conference on Active Media Technology, PP. 324-335, Springer, Cham.
Ilbahar, E., Karaşan, A., Cebi, S. & Kahraman, C., 2018, A Novel Approach to Risk Assessment for Occupational Health and Safety Using Pythagorean Fuzzy AHP & Fuzzy Inference System, Safety Science, 103, PP. 124-136.
Jafari, H., 2017, Infographic: Twitter Usage Statistics in Iran, Techrasa. 02 August 2017 [Online], Available: http://techrasa.com/2017/08/02/infographic-twitter-usage-statistics-iran.
Jianqiang, Z. & Xiaolin, G., 2017, Comparison Research on Text Pre-Processing Methods on Twitter Sentiment Analysis, IEEE Access, 5, PP. 2870-2879.
Jonietz, D., Antonio, V., See, L. & Zipf, A., 2017, Highlighting Current Trends in Volunteered Geographic Information, ISPRS International Journal of Geo-Information, 6(7).
Kovacs-Györi, A., Ristea, A., Kolcsar, R., Resch, B., Crivellari, A. & Blaschke, T., 2018, Beyond Spatial Proximity—Classifying Parks and Their Visitors in London Based on Spatiotemporal and Sentiment Analysis of Twitter Data, ISPRS International Journal of Geo-Information, 7(9), P. 378.
Liu, B., 2010, Sentiment Analysis and Subjectivity, Handbook of Natural Language Processing, 2(2010), PP. 627-666.
Martinez, J., Verplanke, J. & Miscione, G., 2017, A Geographic and Mixed Methods Approach to Capture Unequal Quality-of-Life Conditions, In Handbook of Community Well-Being Research, Springer Netherlands, PP. 385-402.
McCrea, R., Shyy, T.-K. & Stimson, R., 2006, What is the Strength of the Link between Objective and Subjective Indicators of Urban Quality of Life?, Applied Research in Quality of Life, 1(1), PP. 79-96.
Morais, P., Miguéis, V.L. & Camanho, A.S., 2013, Quality of Life Experienced by Human Capital: An Assessment of European Cities, Social Indicators Research, 110(1), PP. 187-206.
Moro, M., Brereton, F., Ferreira, S. & Clinch, J.P., 2008, Ranking Quality of Life Using Subjective Well-Being Data, Ecological Economics, 65(3), PP. 448-460.
Nenko, A. & Petrova, M., 2019, Comparing PPGIS and LBSN Data to Measure Emotional Perception of the City, In International Conference on Digital Transformation and Global Society (PP. 223-234), Springer, Cham.
O'Connor, B., Balasubramanyan, R., Routledge, B.R. & Smith, N.A., 2010, From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series, In Fourth International AAAI Conference on Weblogs and Social Media.
Pang, B. & Lee, L., 2008, Opinion Mining and Sentiment Analysis, Foundations and Trends® in Information Retrieval, 2(1-2), PP. 1-135.
Pauken, B., Pradyumn, M. & Tabrizi, N., 2018, Tracking Happiness of Different US Cities from Tweets,In International Conference on Big Data (PP. 140-148), Springer, Cham.
Perikos, I. & Hatzilygeroudis, I., 2016, Recognizing Emotions in Text Using Ensemble of Classifiers, Engineering Applications of Artificial Intelligence, 51, PP. 191-201.
Philander, K. & Zhong, Y., 2016, Twitter Sentiment Analysis: Capturing Sentiment from Integrated Resort Tweets, International Journal of Hospitality Management, 55(2016), PP. 16-24.Quercia, D. & Saez, D., 2014, Mining Urban Deprivation from Foursquare: Implicit Crowdsourcing of City Land Use, IEEE Pervasive Computing, 13(2), PP. 30-36.
Rabeya, T., Ferdous, S., Ali, H.S. & Chakraborty, N.R., 2017, A Survey on Emotion Detection: A Lexicon Based Backtracking Approach for Detecting Emotion from Bengali Text, In 2017 20th International Conference of Computer and Information Technology (ICCIT), PP. 1-7, IEEE.
See, L., Mooney, P., Foody, G., Bastin, L., Comber, A., Estima, J., ... & Liu, H.Y., 2016, Crowdsourcing, Citizen Science or Volunteered Geographic Informa-tion? The Current State of Crowdsourced Geographic Informa-tion, ISPRS International Journal of Geo-Information, 5(5), P. 55.‏
Sen, A., Sinha, M., Mannarswamy, S. & Roy, S., 2017, Multi-Task Representation Learning for Enhanced Emotion Categorization in Short Text, In Pacific-Asia Conference on Knowledge Discovery and Data Mining, PP. 324-336, Springer, Cham.
Singh, J.P., Dwivedi, Y.K., Rana, N.P., Kumar, A. & Kapoor, K.K., 2017, Event Classification and Location Prediction from Tweets During Disasters, Annals of Operations Research, PP. 1-21.
Sirgy, M.J., Michalos, A.C., Ferriss, A.L., Easterlin, R.A., Patrick, D. & Pavot, W., 2006, The Quality-of Life (QOL) Research Movement: Past, Present, and Future, Social Indicators Research, 76(3), PP. 343-466.
Sivanandam, S.N., Sumathi, S. & Deepa, S.N., 2007, Introduction to Fuzzy Logic Using MATLAB, Vol. 1, Berlin: Springer.Smarzaro, R., Lima, T.F.D.M. & Davis Jr, C.A., 2017, Quality of Urban Life Index From Location-Based Social Networks Data: A Case Study in Belo Horizonte, Brazil, Volunteered Geographic Information and the Future of Geospatial Data, IGI Global, 2017, PP. 185-207.
Thelwall, M., Buckley, K. & Paltoglou, G., 2011, Sentiment in Twitter Events, Journal of the American Society for Information Science and Technology, 62(2), PP. 406-418.
Tiwari, S.P., Raju, M.V., Phonsa, G. & Deepu, D.K., 2016, A Novel Approach for Detecting Emotion in Text, Indian Journal of Science and Technology, 9(29).
Venerandi, A., Quattrone, G., Capra, L., Quercia, D. & Saez-Trumper, D., 2015, Measuring Urban Deprivation from User Generated Content, In Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing, PP. 254-264.
Węziak-Białowolska, D., 2016, Quality of Life in Cities–Empirical Evidence in Comparative European Perspective, Cities, 58, PP. 87-96.
Yadollahi, A., Shahraki, A.G. & Zaiane, O.R., 2017, Current State of Text Sentiment Analysis from Opinion to Emotion Mining, ACM Computing Surveys (CSUR), 50(2), P. 25.
Yang, W. & Mu, L., 2015, GIS Analysis of Depression among Twitter Users, Applied Geography, 60, PP. 217-223.Zadeh, L.A., 1965, Fuzzy Sets,  Information and Control, Vol. 8, PP. 338-353.
Zhang, C., Zeng, D., Li, J., Wang, F.Y. & Zuo, W., 2009, Sentiment Analysis of Chinese Documents: From Sentence to Document Level, Journal of the American Society for Information Science and Technology, 60(12), PP. 2474-2487.
Zivanovic, S., Martinez, J. & Verplanke, J., 2018, Capturing and Mapping Quality of Life Using Twitter Data, GeoJournal, PP. 1-19.
Zook, M., 2017, Crowd-Sourcing the Smart City: Using Big Geosocial Media Metrics in Urban Governance, Big Data & Society, 4(1), PP. 1041-4347.‏