برآورد تبخیر و تعرق واقعی با استفاده از الگوریتم سبال (SEBAL) و مقایسة آن با تبخیر و تعرق استاندارد فائو 56 بهبودیافته با رابطة KC-NDVI

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری علوم و مهندسی مرتع، دانشگاه تهران

2 دانشیار گروه احیای مناطق خشک و کوهستانی، دانشکدة منابع طبیعی دانشگاه تهران

3 استادیار گروه جغرافیا، دانشگاه یزد

چکیده

نظارت بر تغییرات مکانی و زمانی تبخیر تعرق برای مدیریت آبیاری و نیاز آبی گیاهان زراعی، به‌ویژه در مناطق کم‌آب، بسیار مهم است. هدف از پژوهش حاضر برآورد تبخیر و تعرق واقعی با استفاده از الگوریتم سبال (SEBAL) و مقایسة آن با تبخیر و تعرق استاندارد فائو 56، به‌منظور تعیین باغات پستة تحت تنش خشکی در استان یزد است. بدین‌منظور، از یک سری زمانی تصاویر ماهواره‌ای لندست 8 با پانزده تصویر در سال 2015 استفاده شد. در ابتدا، تبخیر و تعرق در دوره‌های پانزده‌روزة فنولوژی پسته به‌دست آمد و سپس، با جمع تبخیر و تعرق در دوره‌های پانزده‌روزه، میزان تبخیر و تعرق در چهار مرحلة اصلی فنولوژی پسته و کل یک دورة رشد سالیانه تعیین شد. تبخیر و تعرق استاندارد نیز به‌روش فائو 56 و با استفاده از رابطة KC-NDVI به‌دست آمد و به‌منزلة استانداردی برای مقایسة تبخیر و تعرق واقعی سبال در نظر گرفته شد. براساس نتایج، الگوریتم سبال قابلیت مناسبی در تعیین میزان تبخیر و تعرق در منطقة مورد مطالعه دارد. با اینکه داده‌های معتبر لایسیمتر برای مقایسة نتایج الگوریتم سبال با آن در منطقة یادشده وجود نداشت؛ مقایسة نتایج با روش استاندارد فائو 56 نشان داد این دو روش مطابقت خوبی با یکدیگر دارند و میانگین ضریب تبیین (R2)، خطای جذر میانگین مربعات (RMSE‌­) و میانگین خطای مطلق (MAE) میان نتایج الگوریتم سبال و رویکرد فائو KC-NDVI به‌ترتیب 0.8، 16.7 و 14.5 میلی‌متر بین دوره‌های پانزده‌روزة فنولوژی پسته به‌دست آمد. میانگین میزان تبخیر و تعرق واقعی و استاندارد در طول یک فصل رشد پسته، در سطح منطقة مورد بررسی، به‌ترتیب 950 و 1086 میلی‌متر است. مقایسة تبخیر و تعرق واقعی و استاندارد نشان داد، در بخش اعظم این منطقه، تبخیر و تعرق واقعی کمتر از شرایط استاندارد است.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of Actual Evapotranspiration Using SEBAL Algorithm and Comparison with Improved FAO 56 Standard Evapotranspiration with KC-NDVI Relationship

نویسندگان [English]

  • Hadi Zare khormizi 1
  • Ali Tavili 2
  • Hamid Reza Ghafarian Malamiri 3
1 Ph.D. Student of Range Management, Faculty of Natural Resources, University of Tehran
2 Associate Prof., Dep. of Rehabilitation of Arid and Mountainous, Faculty of Natural Resources, University of Tehran
3 Assistant Prof., Dep. of Geography, Yazd University
چکیده [English]

Monitoring the spatial and temporal variations of evapotranspiration is crucial for irrigation management and the crop water requirement, especially in arid and semi-arid areas. The purpose of the present study is to estimate the actual evapotranspiration using the SEBAL algorithm and compare it with the FAO 56 standard evapotranspiration to determine pistachio orchards under drought stress in Yazd province. To do so, Landsat 8 satellite images time series with 15 images in 2015 were used. At first, actual evapotranspiration was calculated in 15 days of pistachio phenology and then by summation of evapotranspiration in 15 days, total evapotranspiration was determined in four main stages of pistachio phenology covering the whole period of annual growth. The FAO 56 standard evapotranspiration was also obtained by using the KC-NDVI relationship as the standard for comparing with actual evapotranspiration. Based on the results, SEBAL algorithm has an acceptable capability to determine the evapotranspiration rate in the study area. However, due to lack of valid Lysimeter data in the study area, It was not possible to validate the results of the SEBAL algorithm. But comparing the results with the FAO 56 standard method showed that the two methods are in good agreement with each other. In average, the coefficient determination, RMSE and MAE between the results of SEBAL algorithm and FAO KC-NDVI approach were 0.8, 16.7 mm and 14.5 mm, respectively, for the 15-day of pistachio phenology stages. The average of actual and standard evapotranspiration rates during a pistachio growing season at the study area were 950 and 1086 mm, respectively. Comparison of actual and standard evapotranspiration shows that in most of the study area actual evapotranspiration is lower than standard conditions.

کلیدواژه‌ها [English]

  • Drought stress
  • Irrigation management
  • FAO 56
  • Pistachio
  • Crop coefficient
دستورانی، م.، پورمحمدی، س.، رحیمیان، م.ح.، 1391، تخمین تبخیر‌ـ تعرق واقعی باغات پستة منطقة اردکان به‌کمک سنجش از دور، پژوهش آب در کشاورزی، دورة اول، شمارة 26، صص. 13-1.
زارع خورمیزی، ه.، غفاریان مالمیری، ح.ر، 1399، تخمین ضریب گیاهی و رابطة KC-NDVI گیاه پسته (Pistacia vera L.) با بهره‌گیری از سنجش از دور در حاشیة کویر ابرکوه یزد، مدیریت بیابان، دورة هشتم، شمارة 15، صص. 120-101.
زارع خورمیزی، ه.، حسینی، س.ز.، مختاری م.ح.، غفاریان مالمیری، ح.، 1396، بازسازی سری‌های زمانی NDVI سنجندة MODIS با استفاده از الگوریتم تجزیه‌‌وتحلیل هارمونیک سری‌های زمانی (HANTS) (مطالعة موردی: استان یزد)، برنامه‌ریزی و آمایش فضا، دورة بیست‌ویکم، شمارة 3، صص. 255-221.
زمانی ثانی، ا.، خورانی، ا.، صادقی لاری، ع.، سدیدی، ج.، 1396، ارزیابی برآورد تبخیر‌ـ ‌تعرق گیاه گندم با استفاده از الگوریتم سبال (مطالعۀ موردی: ایستگاه تحقیقات کشاورزی شهرستان حاجی‌آباد)، پژوهش‌های جغرافیای طبیعی، دورة چهل‌ونهم، شمارة 4، صص. 681-667.
شرافتی، ع.، ارزانی، ک.، رمضانی‌ مقدم، م.، 1392، ارزیابی گل‌دهی و میوه‌دهی دوازده رقم پسته (Pistacia vera L.) در شرایط آب‌و‌هوایی خراسان، به‌نژادی نهال و بذر، دورة بیست‌ونهم، شمارة 2، صص. 256-243.
عباس‌نژاد الچین، ا.، درویش‌صفت، ع.ا.، بذرافشان، ج.، 1399، تهیه و ارزیابی نقشه‌های تبخیر و تعرق براساس داده‌های ماهوارۀ لندست8 و مدل SEBAL در جنگل‌های هیرکانی (مطالعۀ موردی: جنگل‌های پل‌سفید و کیاسر)، نشریة جنگل و فراورده‌های چوب، دورة هفتادوسوم، شمارة 3، صص. 270-259.
غفاریان مالمیری، ح.، زارع خورمیزی، ه.، 1396، بازسازی سری‌های زمانی داده‌های ماهواره‌ای دمای سطح زمین با استفاده از الگوریتم تجزیه‌وتحلیل هارمونیک سری‌های زمانی (HANTS)، سنجش از دور و سامانة اطلاعات جغرافیایی در منابع طبیعی، دورة هشتم، شمارة 3، صص. 55-37.
قمرنیا، ه.، رضوانی س.و.، 1393، محاسبه و پهنه‌بندی تبخیر و تعرق با استفاده از الگوریتم سبال (SEBAL) در غرب ایران (دشت میان دربند)، نشریة آب و خاک، دورة بیست‌وهشتم، شمارة 1، صص. 81-72.
کرباسی، م.، مقدم، م.، نیکبخت، ج.، کاویانی، ع.، 1395، تخمین تبخیر‌ و تعرق واقعی گیاه با استفاده از الگوریتم سبال (مطالعۀ موردی: منطقۀ خرم‌دره در استان زنجان)، اکوهیدرولوژی، دورة سوم، شمارة 3، صص. 437-427.
کریمی، ع.، فرهادی بانسوله، ب.، حصادی، ه.، 1395، برآورد تبخیر و تعرق واقعی با استفاده از الگوریتم سبس و تصاویر لندست در ماهیدشت، نشریة آب و خاک، دورة سی‌اُم، شمارة 3، صص. 716-706.
میرزایی، ف.، کشاورز، م.، وظیفه‌دوست، م.، 1397، توسعة الگوریتم SM-SEBAL به‌منظور محاسبة تبخیر و تعرق واقعی به‌کمک سنجش از دور، فصلنامة علمی‌ـ پژوهشی مهندسی منابع آب، دورة یازدهم، شمارة 38، صص. 128-107.
ولیزادة کامران، خ.، لنگ‌باف، م.، 1397، برآورد تبخیر‌ـ تعرق واقعی ذرت با استفاده از پردازش تصاویر ماهواره‌ای و مدل سبال در منطقة خوزستان، نشریة علمی جغرافیا و برنامه‌ریزی، دورة بیست‌ودوم، شمارة 65، صص. 299-287.
Allen, R.G., Pereira, L.S., Raes, D. & Smith M., 1998, Crop Evapotranspiration: Guidelines for Computing Crop Requirements, Irrigation and Drainage Paper, No. 56, FAO, Rome, Italy.
Allen, R.G., Waters, R., Tasumi, M., Trezza, R. & Bastiaanssen, W., 2002, SEBAL, Surface Energy Balance Algorithms for Land, Idaho Implementation, Advanced Training and Users Manual, Version 1.0.
Allen, R.G., Pereira, L.S., Howell, T.A. & Jensen, M.E., 2011, Evapotranspiration Information Reporting: I. Factors Governing Measurement Accuracy, Agricultural Water Management, 98, PP. 899-920.
 
Bala, A., Rawat, K.S., Misra, A.K. & Srivastava, A., 2016, Assessment and Validation of Evapotranspiration Using SEBAL Algorithm and Lysimeter Data of IARI Agricultural Farm, India. Geocarto International, 31(7), PP. 739-764.
Bastiaanssen, W.G.M., 2000, SEBALbased Sensible and Latent Heat Fluxes in the Irrigated Gediz Basin, Turkey, Journal of Hydrology, 229, PP. 87-100.
Bastiaanssen, W.G., Menenti, M., Feddes, R.A. & Holtslag, A.A.M., 1998a, A Remote Sensing Surface Energy Balance Algorithm for Land (SEBAL). 1. Formulation, Journal of Hydrology, 212, PP. 198-212.
Bastiaanssen, W.G., Pelgrum, H., Wang, J., Ma, Y., Moreno, J.F., Roerink, G.J. & Van der Wal, T., 1998b, A Remote Sensing Surface Energy Balance Algorithm for Land (SEBAL): Part 2: Validation, Journal of Hydrology, 212, PP. 213-229.
Bastiaanssen, W.G.M., Molden, D.J. & Makin, I.W., 2000, Remote Sensing for Irrigated Agriculture: Examples from Research and Possible Applications, Agricultural Water Management, 46 (2), PP. 137-155.
Bastiaanssen, W.G.M., Noordman, E.J.M., Pelgrum, H., Davids, G., Thoreson, B.P. & Allen, R.G., 2005, SEBAL Model with Remotely Sensed Data to Improve Water-Resources Management Under Actual Field Conditions, Journal of Irrigation and Drainage Engineering, 131(1), PP. 85-93.
Bellvert, J., Adeline, K., Baram, S., Pierce, L., Sanden, B. & Smart, D., 2018, Monitoring Crop Evapotranspiration and Crop Coefficients over an Almond and Pistachio Orchard throughout Remote Sensing, Remote Sensing, 10(12), PP. 2001.
Bezerra, B.G., Santos, C.A.C., Silva, B.B., Perez-Marin, A.M., Bezerra, M.V.C., Bezerra, J.R.C. & Ramana Rao, T.V., 2013, Estimation of Soil Moisture in the Root-Zone from Remote Sensing Data, Revista Brasileira de Ciência do Solo, 37, PP. 595-603.
Bezerra, B.G., Silva, B.B., Santos, C.A.C.D. & Bezerra, J., 2015, Actual Evapotranspiration Estimation Using Remote Sensing: Comparison of SEBAL and SSEB Approaches, Advances in Remote Sensing, 4(3), PP. 234-247.
Bouwer, L.M., Biggs, T.W. & Aerts, C.J.H., 2008, Estimates of Spatial Variation in Evaporation Using Satellite-Derived Surface Temperature and a Water Balance Model, Hydrological Processes, 22, PP. 670-682.
De Oliveira, A.S., Trezza, R., Holzapfel, E.A., Lorite, I. & Paz, V.P.S., 2009, Irrigation Water Management in Latin America, Chilean Journal of Agricultural Research, 69(1), PP. 7-16.
Elnmer, A., Khadr, M., Kanae, S. & Tawfik, A., 2019, Mapping Daily and Seasonally Evapotranspiration Using Remote Sensing Techniques over the Nile Delta, Agricultural Water Management, 213, PP. 682-692.
El-Shirbeny, M.A., Ali, A.M., Badr, M.A. & Bauomy, E.M., 2014, Assessment of Wheat Crop Coefficient Using Remote Sensing Techniques, World Research Journal of Agricultural Sciences, 1(2), PP. 12-17.
Farg, E., Arafat, S.M., El-Wahed, M.A. & El-Gindy, A.M., 2012, Estimation of Evapotranspiration ETc and Crop Coefficient KC of Wheat, in South Nile Delta of Egypt Using Integrated FAO-56 Approach and Remote Sensing Data, The Egyptian Journal of Remote Sensing and Space Science, 15(1), PP. 83-89.
Gao Y., Long D. & Li Z.L., 2008, Estimation of Daily Actual Evapotranspiration from Remotely Sensed Data under Complex Terrain over the Upper Chao River Basin in North China, International Journal of Remote Sensing, 29 (11), PP. 3295-3315.
Ghafarian Malamiri, H., Rousta, I., Olafsson, H., Zare, H. Zhang, H., 2018, Gap-Filling of MODIS Time Series Land Surface Temperature (LST) Products Using Singular Spectrum Analysis (SSA), Atmosphere, 9(9), PP. 334.
Ghafarian Malamiri, H.R., Zare, H., Rousta, I., Olafsson, H., Izquierdo Verdiguier, E., Zhang, H. & Mushore, T.D., 2020, Comparison of Harmonic Analysis of Time Series (HANTS) and Multi-Singular Spectrum Analysis (M-SSA) in Reconstruction of Long-Gap Missing Data in NDVI Time Series, Remote Sensing, 12(17), P. 2747.
Goldhamer, D.A., 2005, Tree Water Requirements and Regulated Deficit Irrigation, Pistachio Production Manual, 4, PP. 103-116.
Goldhamer, D.A. & Beede., R., 1993, Results of Four Years of Regulated Deficit Irrigation on Deep Rooted Pistachio Trees, Annual Report of the California Pistachio Industry, Crop Year 1992-93, California Pistachio Commission, Fresno, CA 107-110.
Hargreaves, G.H., 1994, Defining and Using Reference Evapotranspiration, Journal of Irrigation and Drainage Engineering, 120 (6), PP. 1132-1139.
Inamdar, P., Singh, T.P., Metha, K. & Kumbhar, V., 2016, Assessment of Irrigation and Agriculture Potential of the Krishna River Basin using Geospatial Techniques, Indian Journal of Science and Technology, 9(44), PP. 1-9.
Jaber, H.S., Mansor, S., Pradhan, B. an&d Ahmad, N., 2016, Evaluation of SEBAL Model for Evapotranspiration Mapping in Iraq Using Remote Sensing and GIS, International Journal of Applied Engineering Research, 11, PP. 3950-3955.
Jiménez-Bello, M.Á., Castel, J.R., Testi, L. & Intrigliolo, D.S., 2015., Assessment of a Remote Sensing Energy Balance Methodology (SEBAL) Using Different Interpolation Methods to Determine Evapotranspiration in a Citrus Orchard, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(4), PP. 1465-1477.
Kamble, B., Irmak, A., Hubbarb, K. & Gowda, P., 2013, Irrigation Scheduling Using Remote Sensing Data Assimilation Approach, Advances in Remote Sensing, 2, PP. 258-268.
Long, D., Singh, V.P. & Li, Z.L., 2011, How Sensitive is SEBAL to Changes in Input Variables, Domain Size and Satellite Sensor?, Journal of Geophysical Research: Atmospheres, 116 (D21).
Mendonça, J.C., Sousa, E.D., André, R.G.B., Silva, B.D. & Ferreira, N.D.J., 2012, Assessment of Evapotranspiration in North Fluminense Region, Brazil, using Modis Products and Sebal Algorithm, Evapotranspiration-Remote Sensing and Modeling, 1, PP. 1-18.
Oliveira, T.C.D., Ferreira, E. & Dantas, A.A.A., 2016, Temporal Variation of Normalized Difference Vegetation Index (NDVI) and Calculation of the Crop Coefficient (KC) from NDVI in Areas Cultivated with Irrigated Soybean, Ciência Rural, 46(9), PP. 1683-1688.
Passioura, J.B., 2007, The Drought Environment Physical, Biological and Agricultural Perspectives, Journal of Experimental Botany, 58, PP. 113-117.
Paul, G., Gowda, P.H., Vara Prasad, P.V., Howell, T.A., Staggenborg, S.A. & Neale, C.M., 2013, Lysimetric Evaluation of SEBAL Using High Resolution Airborne Imagery from BEAREX08, Advances in Water Resources, 59, PP. 157-168.
Rahimian, M.H., Taghvaeian, S., Nouri, M.R., Tabatabaei, S.H., Mokhtari, M.H., Hasheminejhad, Y. & Neshat, E., 2014, Estimating Pistachio Evapotranspiration Using MODIS Imagery: A Case Study from Ardakan, Iran, In World Environmental and Water Resources Congress, 2014, PP. 1784-1794.
Rahimian, M.H., Shayannejad, M., Eslamian, S., Gheysari, M. & Jafari, R., 2019, Daily and Seasonal Pistachio Evapotranspiration in Saline Condition: Comparison of Satellite-Based and Ground-Based Results, Journal of the Indian Society of Remote Sensing, 47(5), PP. 777-787.
Rahimzadegan, M. & Janani, A., 2019, Estimating Evapotranspiration of Pistachio Crop Based on SEBAL Algorithm Using Landsat 8 Satellite Imagery, Agricultural Water Management, 217, PP. 383-390.
Rawat, K.S., Bala, A., Singh, S.K. & Pal, R.K., 2017, Quantification of Wheat Crop Evapotranspiration and Mapping: A Case Study from Bhiwani District of Haryana, India, Agricultural Water Management, 187, PP. 200-209.
Reyes-Gonzalez, A., Hay, C., Kjaersgaard, J. & Neale, C., 2015, Use of Remote Sensing to Generate Crop Coefficient and Estimate Actual Crop Evapotranspiration, In 2015 ASABE Annual International Meeting (P. 1), American Society of Agricultural and Biological Engineers.
Rocha, J., Perdigão, A., Melo, R. & Henriques, C., 2012, Remote Sensing Based Crop Coefficients for Water Management in Agriculture, Sustainable Development-Authoritative and Leading Edge Content for Environmental Management, PP. 167-192.
Ruhoff, A.L., Paz, A.R., Collischonn, W., Aragao, L.E., Rocha, H.R. & Malhi, Y.S., 2012, A MODIS-Based Energy Balance to Estimate Evapotranspiration for Clear-Sky Days in Brazilian Tropical Savannas, Remote Sensing, 4(3), PP. 703-725.
Ulna, M., Kanber, R., Steduto, P., Aydin, Y. & Dlker., K., 2005, Effects of Different Water and Nitrogen Levels on the Yield and Periodicity of Pistachio, Turkish Journal of Agriculture and Forestry, 29, PP. 39-49.
Wagle, P., Bhattarai, N., Gowda, P. Kakani, V., 2017, Performance of Five Surface Energy Balance Models for Estimating Daily Evapotranspiration in High Biomass Sorghum, ISPRS Journal of Photogrammetry and Remote Sensing, 128, PP. 192-203.
Zare, M. & Koch, M., 2017, Computation of the Irrigation Water Demand in the Miandarband Plain, Iran, Using FAO-56-and Satellite-Estimated Crop Coefficients, Journal of Thai Interdisciplinary Research, 12(3), PP. 15-25.