Abdul-Wahab, S.A., Bakheit, C.S. & Al-Alawi, S.M., 2005, Principal Component and Multiple Regression Analysis in Modelling of Ground-Level Ozone and Factors Affecting Its Concentrations, Environmental Modelling & Software, 20(10), PP. 1263-1271.
https://doi.org/ 10.1016/j.envsoft.2004.09.001
Abdullah, S., Nasir, N.H.A., Ismail, M., Ahmed, A.N. & Jarkoni, M.N.K., 2019, Development of Ozone Prediction Model in Urban Area, International Journal of Innovative Technology and Exploring Engineering, 8(10), PP. 2263-2267.
https://doi.org/ 10.35940/ijitee.J1127.0881019
Ahamad, F., Latif, M.T., Tang, R., Juneng, L., Dominick, D. & Juahir, H., 2014, Variation of Surface Ozone Exceedance around Klang Valley, Malaysia. Atmospheric Research, 139, PP. 116-127.
https://doi.org/ 10.1016/j.atmosres.2014.01.003
Ahmadi, M.M. & Mahmoudi, P., 2013, Analysis of Tehran Air Pollution Data in Recent Decade (2000-2009), IJHE, 6(1), PP. 33-44.
Asl, F.B., Leili, M., Vaziri, Y., Arian, S.S., Cristaldi, A., Conti, G.O. & Ferrante, M., 2018, Health Impacts Quantification of Ambient Air Pollutants Using AirQ Model Approach in Hamadan, Iran, Environmental Research, 161, PP. 114-121.
https://doi.org/ 10.1016/j.envres.2017.10.050
Barrero, M., Grimalt, J.O. & Cantón, L., 2006, Prediction of Daily Ozone Concentration Maxima in the Urban Atmosphere, Chemometrics and Intelligent Laboratory Systems, 80(1), PP. 67-76.
https://doi.org/ 10.1016/j.chemolab.2005.07.003
Biancofiore, F., Verdecchia, M., Di Carlo, P., Tomassetti, B., Aruffo, E., Busilacchio, M., Bianco, S., Di Tommaso, S. & Colangeli, C., 2015, Analysis of Surface Ozone Using a Recurrent Neural Network, Science of the Total Environment, 514, PP. 379-387.
https://doi.org/10.1016/j.scitotenv.2015.01.106
Booker, F., Muntifering, R., McGrath, M., Burkey, K., Decoteau, D., Fiscus, E., Manning, W., Krupa, S., Chappelka, A. & Grantz, D., 2009, The Ozone Component of Global Change: Potential Effects on Agricultural and Horticultural Plant Yield, Product Quality and Interactions with Invasive Species, Journal of Integrative Plant Biology, 51(4), PP. 337-351.
https://doi.org/10.1111/j.1744-7909.2008.00805.x
Draxler, R.R., 2000, Meteorological Factors of Ozone Predictability at Houston, Texas, Journal of the Air & Waste Management Association, 50(2), PP. 259-271.
https://doi.org/10.1080/10473289.2000.10463999
Gvozdić, V., Kovač-Andrić, E. & Brana, J., 2011, Influence of Meteorological Factors NO 2, SO 2, CO and PM 10 on the Concentration of O 3 in the Urban Atmosphere of Eastern Croatia, Environmental Modeling & Assessment, 16(5), PP. 491-501.
https://doi.org/ 10.1007/s10666-011-9256-4
Hastie, T., Tibshirani, R., Friedman, J.H. & Friedman, J.H., 2009, The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Vol. 2), Springer.
Hollaway, M.J., Arnold, S., Challinor, A.J. & Emberson, L., 2012, Intercontinental Trans-Boundary Contributions to Ozone-Induced Crop Yield Losses in the Northern Hemisphere, Biogeosciences, 9(1), PP. 271-292.
https://doi.org/ 10.5194/bg-9-271-2012, 2012.
Huang, Y., Yang, Z. & Gao, Z., 2019, Contributions of Indoor and Outdoor Sources to Ozone in Residential Buildings in Nanjing, International Journal of Environmental Research and Public Health, 16(14), P. 2587.
https://doi.org/ 10.3390/ijerph16142587
Ito, K., De Leon, S.F. & Lippmann, M., 2005, Associations between Ozone and Daily Mortality: Analysis and Meta-Analysis, Epidemiology, 16(4), PP. 446-457.
https://doi.org/10.1097/01.ede.0000165821.90114.7f
Javanbakht Amiri, S. & Khatami, S.H., 2012, The Study of the Correlation between Air Quality Index Pollution and Meteorological Parameters in Tehran with Regression Analysis Approach, Human and Environment, 10(34), PP. 15-28.
Kampa, M. & Castanas, E., 2008, Human Health Effects of Air Pollution, Environmental Pollution, 151(2), PP. 362-367.
https://doi.org/ 10.1016/j.envpol.2007.06.012
Li, X. & Rappenglück, B., 2014, A WRF–CMAQ Study on Spring Time Vertical Ozone Structure in Southeast Texas, Atmospheric Environment, 97, PP. 363-385.
https://doi.org/10.1016/j.atmosenv.2014.08.036
Moustris, K., Nastos, P., Larissi, I. & Paliatsos, A., 2012, Application of Multiple Linear Regression Models and Artificial Neural Networks on the Surface Ozone Forecast in the Greater Athens Area, Greece, Advances in Meteorology, 2012.
https://doi.org/ 10.1155/2012/894714
Özbay, B., 2012, Modeling the Effects of Meteorological Factors on SO2 and PM10 Concentrations with Statistical Approaches, Clean–Soil, Air, Water, 40(6), PP. 571-577.
https://doi.org/ 10.1002/clen.201100356
Pak, U., Kim, C., Ryu, U., Sok, K. & Pak, S., 2018, A Hybrid Model Based on Convolutional Neural Networks and Long Short-Term Memory for Ozone Concentration Prediction, Air Quality, Atmosphere & Health, 11(8), PP. 883-895.
https://doi.org/ 10.1007/s11869-018-0585-1
Reeves, C.E., Penkett, S.A., Bauguitte, S., Law, K.S., Evans, M.J., Bandy, B.J., Monks, P.S., Edwards, G.D., Phillips, G. & Barjat, H., 2002, Potential for Photochemical Ozone Formation in the Troposphere over the North Atlantic as Derived from Aircraft Observations during ACSOE, Journal of Geophysical Research: Atmospheres, 107(D23), ACH 14-11-ACH 14-14.
https://doi.org/ 10.1029/2002JD002415
Ren, X., Mi, Z. & Georgopoulos, P.G., 2020, Comparison of Machine Learning and Land Use Regression for fine Scale Spatiotemporal Estimation of Ambient Air Pollution: Modeling Ozone Concentrations across the Contiguous United States, Environment International, 142, P. 105827.
https://doi.org/10.1016/j.envint.2020.105827
Shan, W., Yin, Y., Lu, H. & Liang, S., 2009, A Meteorological Analysis of Ozone Episodes Using HYSPLIT Model and Surface Data, Atmospheric Research, 4(93), PP. 767-776.
DOI: 10.1016/j.atmosres.2009.03.007
Sotoudeheian, S. & Arhami, M., 2014, Estimating Ground-Level PM 10 Using Satellite Remote Sensing and Ground-Based Meteorological Measurements over Tehran, Journal of Environmental Health Science and Engineering, 12(1), PP. 1-13.
https://doi.org/ 10.1186/s40201-014-0122-6
Sousa, S., Martins, F.G., Alvim-Ferraz, M. & Pereira, M.C., 2007, Multiple Linear Regression and Artificial Neural Networks Based on Principal Components to Predict Ozone Concentrations, Environmental Modelling & Software, 22(1), PP. 97-103.
https://doi.org/10.1016/j.envsoft.2005.12.002
Spellman, G., 1999, An Application of Artificial Neural Networks to the Prediction of Surface Ozone Concentrations in the United Kingdom, Applied Geography, 19(2), PP. 123-136.
https://doi.org/10.1016/S0143-6228(98)00039-3
Sullivan, J.T., Rabenhorst, S.D., Dreessen, J., McGee, T.J., Delgado, R., Twigg, L. & Sumnicht, G., 2017, Lidar Observations Revealing Transport of O3 in the Presence of a Nocturnal Low-Level Jet: Regional Implications for “Next-Day” Pollution, Atmospheric Environment, 158, PP. 160-171.
https://doi.org/ 10.1016/j.atmosenv.2017.03.039
Susaya, J., Kim, K.-H., Shon, Z.-H. & Brown, R.J., 2013, Demonstration of Long-Term Increases in Tropospheric O3 Levels: Causes and Potential Impacts, Chemosphere, 92(11), PP. 1520-1528.
https://doi.org/10.1016/j.chemosphere.2013.04.017
Ul-Saufie, A.Z., Yahaya, A.S., Ramli, N.A., Rosaida, N. & Hamid, H.A., 2013, Future Daily PM10 Concentrations Prediction by Combining Regression Models and Feedforward Backpropagation Models with Principle Component Analysis (PCA), Atmospheric Environment, 77, PP. 621-630.
https://doi.org/ 10.1016/j.atmosenv.2013.05.017
Vingarzan, R., 2004, A Review of Surface Ozone Background Levels and Trends, Atmospheric Environment, 38(21), PP. 3431-3442.
https://doi.org/10.1016/j.atmosenv.2004.03.030
Xiang, S., Liu, J., Tao, W., Yi, K., Xu, J., Hu, X., Liu, H., Wang, Y., Zhang, Y., Yang, H., Hu, J., Wan, Y., Wang, X., Ma, J., Wang, X., Tao, S., 2020, Control of both PM2.5 and O3 in Beijing-Tianjin-Hebei and the surrounding areas, Atmospheric Environment, 224, 117259.
https://doi.org/ 10.1016/j.atmosenv.2020.117259