پیش‌بینی احتمال مکانی وقوع برف با استفاده از داده‌های سنجش از دور و زنجیرة مارکوف مرتبة یک

نوع مقاله : علمی - پژوهشی

نویسنده

دانشگاه صنعتی شریف

چکیده

ارزیابی و برآورد ذخایر برفی در مطالعات بیلان آب و بهره‌برداری بهینه از منابع آب در مناطق خشک و نیمه‌خشکی چون ایران که دارای ریزش‌های فصلی برف هستند، اهمیت فراوانی دارد. در حوضه‌های آبریز حوالی دامنه‌های برف‌گیر نظیر زاگرس که سیلاب‌های بهاره سهم عمدة جریان‌های سطحی را تشکیل می‌دهند، پیش‌بینی احتمالاتی ذخیرة برفی پایان سال ضروری است. در پژوهش‌ حاضر، پیش‌بینی احتمالی وقوع برف در حوضة آبریز رودخانه‌های کرخه، دز، کارون و بخشی از حوضة مارون با استفاده از مدل زنجیرة مارکوف مرتبة یک بررسی شد. برای این منظور از داده‌های سطح برف استخراج‌شده از تصاویر ماهواره‌ای سنجندة NOAA-AVHRR در طول سال‌های آبی 1367 تا 1383 استفاده شد. حالت‌های ممکن در نقشه‌های برف به‌صورت وجود (عدد یک) و نبود برف (عدد صفر) تعریف شد. سپس با اعمال فرایند زنجیرة مارکوف، پیش‌بینی احتمال مکانی وقوع برف برای اسفندماه سال‌های 83-1379 صورت گرفت. نتایج نشان دادند که پیش‌بینی احتمالاتی سطح برف در اسفندماه تطبیق مناسبی با نقشه‌های حداکثر پوشش سطحی برف به‌دست‌آمده از تصاویر ماهواره‌ای دارد. وضعیت پوشش سطح در بیش از 60 درصد سطح حوضه با احتمال 100 درصد و در 80 درصد سطح حوضه، با احتمال 50 تا 90 درصد به‌درستی پیش‌بینی شده است. افزون بر این، به‌منظور ارزیابی کمی عملکرد مدل پیش‌بینی از روش جداول وابستگی استفاده شد. نتایج ارزیابی مدل برمبنای سه معیار احتمال ردیابی (POD)، نسبت هشدار غلط (FAR) و موفقیت بحرانی (CSI)، نیز توانمندی مدل زنجیرة مارکوف را در پیش‌بینی سطوح برفی نشان می‌دهند.    کلید‌واژه‌ها: احتمال وقوع برف، زنجیرة مارکوف مرتبة یک، ماتریس احتمالات انتقال.  

کلیدواژه‌ها


عنوان مقاله [English]

Spatial Stochastic Forecasting of Snow Cover Using First Order Markov Chain

چکیده [English]

Evaluation of snow storage is of high importance in water balance studies and optimum operation of water resources in arid and semi-arid regions like Iran. Particularly in the river basins nearby Zagrous Mountains where surface water flows mainly consist of spring runoffs, stochastic forecasting of the snow storage at the end of the year is necessary. In this study stochastic forecasting of snow in river basins of the Karkheh, Dez, Karun and some parts of the Marun was investigated using the first order Markov Chain model. Snow cover data retrieved from NOAA-AVHRR satellite images between 1989 and 2004 were applied as inputs to the model. Two possible states were defined for each snow cover map including existence (1) and non-existence (0) of snow. Through applying the Markov Chain process, snow cover maps of the study area were predicted for March 2000 to 2004. Results show that stochastic forecasts of snow cover properly consist with satellite derived maximum snow cover maps.So that, not only the area of snow covered lands was successfully estimated, but also the exact location of the snow or dry covers was appropriately predicted in more than 80% of the pixels. The performance of the model was assessed using contingency tables and three measures including: Probability of Detection, False Alarm Ratio and Critical Success Index. Results reveal the promising capability of the first order Markov Chain model to forecast snow covered area. Keywords: Snow Probability, First-Order Markov Chain, State Transition Matrix.

  1. Alasseur, C., Husson, L., Perez-Fontan, F., 2004, Simulation of Rain Events Time Series with Markov Model, PIMRC 2004. 15th IEEE International Symposium, 4(5-8), PP. 2801 - 2805.
  2. Banihabib, M.A., Jamali, F.S., Saghafian, B., 2013, Monitoring Snow Area of the Shahcheraghi Dam Basin Using NOAA-AVHRR, Physical GeographyResearch Quartely, 45(3), PP. 13-29.
  3. Banik, P., Mandal, A., M. Rahman, S., 2002, Markov Chain Analysis of Weekly Rainfall Data in Determining Drought-proneness, Discrete Dynamics in Nature and Society, 7(4), PP. 231-239.
  4. Carey, D.I, Haan, C.T., 1978, Markov process for simulating daily point rainfall, ASCE Journal of Irrigation and Drainage, 104(1), PP. 111-125.
  5. Clark, M.P., Slater, A.G., Barrett, A.P. et al., 2006, Assimilation of Snow Covered Area Information Into Hydrologic and Land-Surface Models, Advances in Water Resources, 29(8), PP. 1209–21.
  6. Clarke, R.T., 1998, Stochastic Process for Water Scientists: Developments and Applications, Wiley.
  7. Coe, R., Stern, R.D., 1982, Fitting models to daily rainfall data (Jordan, Niger, Botswana, Sri Lanka), Journal of Applied Meteorology, 21(7), PP.1024-1031.
  8. Derksen, C., LeDrew, E., 2000, Variability and Change in Terrestrial Snow Cover: Data acquisition and links to the atmosphere. Progress in Physical Geography, 24,
  9. PP. 469–498.
  10. Fattahi, A., Vazifehdust, M., 2010, Estimation of the Snow Temperature and Snow Covered Area Using MODIS Images: The case of Golestan Basins, Geographical Research, 26(3), PP. 17403-17423.
  11. Gasm El-Seed, A.M., 1987, An Application of Markov Chain Model for Wet and dry spell probabilities at Juba in Southern Sudan, GeoJournal, 15(4), PP. 420-424.
  12. Haan, C.T., Allen, D.M., Street, J.O., 1976, A Markov Chain Model for Daily Rainfall, Water Resources Research, 12 (3),
  13. PP. 443-449.
  14. Immerzeel, W.W., Droogers, P., de Jong, S.M., Bierkens, M.F.P., 2009, Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing, Remote Sensing of Environment, 113, PP. 40–49.
  15. Jain, A., Kumar, A.M., 2007, Hybrid Neural Network Models for Hydrologic Time Series Forecasting, Applied Soft Computing, 7, PP. 585–592.
  16. Jamab, 2004, Design of the Snow Database and Site Selection for Snow Monitoring Staions in Karun, Dez, Karkheh and Marun Basins Using Remotesensing: algorithem for mapping snow covered area from NOAA- satellite images.
  17. Jimoh, O.D., Webster P., 1996, The Optimum Order of a Markov Chain Model for Daily Rainfall in Nigeria, Journal of Hydrology, 185 (1-4), PP. 45-69.
  18. Lana, X., Burgueno, A., 1998, Daily Dry-wet Behaviour in Catalonia (NE Spain) from the Viewpoint of Markov Chains, International Journal of Climatology, 18 (7), PP. 793-815.
  19. Marshall, S., Roads, J. O., Glatzmaier, G., 1994, Snow Hydrology in a General Circulation Model, Journal of Climate, 7, PP. 1251–1269.
  20. Mason, S.J., Graham, N.E., 1999, Conditional Probabilities, Relative operating Characteristics and Relative Operating Levels, Weather and Forecasting, 14,
  21. PP. 713–725.
  22. Mei, A., Peng, W., Qing, Q. et al., 2001, Remote Sensing Introduction, Higher education Press, Beijing, PP. 46–51.
  23. Miller, A.J., Leslie, L.M., 1984, Short-term Single-station Forecasting of Precipitation, Monthly Weather Review, 112 (6), PP. 1198-1205.
  24. Miryaeghubzadeh, M.H., Ghanbarpur, M., 2009, Assessing the Spatial Resolution of Cloud, Snow and Land Products of MODIS Images, Iranian Journal of Watershed Management Science and Engineering, 3(9), PP. 51-54.
  25. Morassutti, M.P., 1987, A One-Dimensional Markov Chain Model for Predicting Changes in Annual Snowfall at Peterborough, Ontario, Canadian Water Resources Journal, 12(2), PP. 53-61.
  26. Najafi Idgar, A., Ghoddusi, J., Saghafian, B., Porhemmat, J., 2007, Snowmelt Runoff Estimation by Using RS & GIS (A case study in Shahar-chi watershed- Orumiyeh), Pajouhesh & Sazandegi, 76, PP. 177-185.
  27. Niu, G.Y., Yang, Z.L., 2007, An Observation-based Formulation of Snow Cover Fraction and its Evaluation Over Large North American River Basins, Journal of Geophysical Research-Atmospheres, 112.
  28. Norbiato, D., Borga, M., Esposti, S. D., Gaume, E., Anquetin, S., 2008, Flash Flood Warning Based on Rainfall Depth-Duration Thresholds and Soil Moisture Conditions: An Assessment for Gauged and Ungauged Basins, Journal of Hydrology, 362(3-4), PP. 274-290.
  29. Palutikof, J.P., Goodess, C.M., Watkins, S.J., Holt, T., 2002, Generating Rainfall and Temperature Scenarios at Multiple Sites, Examples from the Mediterranean, Climate, 15(24), PP. 3529-3548.
  30. Phien, H.N., Warakittimalee, S., 1981, Simulation of Daily Rainfall Sequences using Markov Chain, Water SA, 7(4),
  31. PP. 193-202.
  32. Roesch, A., Wild, M., Gilgen, H., Ohmura, A., 2001, A New Snow Cover Fraction Parametrization for the ECHAM4 GCM, Climate Dynamics, 17, PP. 933–946.
  33. Rotondi, M.A., 2010, To Ski or Not to Ski: Estimating Transition Matrices to Predict Tomorrow’s Snowfall Using Real Data, Journal of Statistics Education, 18(3),
  34. PP. 1-14.
  35. Saghafian, B., Davtalab, R., 2007, Mapping Snow Characteristics Based on snow Observation Probability, International Journal of Climatology, 27, PP. 1277-1286.
  36. Sauter, T., Weitzenkamp, B., Schneider, C., 2010, Spatio-temporal Prediction of Snow Cover in the Black Forest Mountain Range Using Remote Sensing and A Recurrent Neural Network, International journal of climatology, 30, PP. 2330–2341.
  37. Schaefer, J.T., 1990, The Critical Success Index as an Indicator of Warning Skill, Weather and Forecasting, 5, PP. 570–575.
  38. Schoof, J.T., Pryor, S.C., 2008, On the Proper Order of Markov Chain Model for Daily Precipitation Occurrence in the Contiguous United States, Journal of Applied Meteorology and Climatology, 47, PP. 2477–2486.
  39. Shafer, B.A., Leaf, C.F., 1979, Landsat Derived Snowcover as an Input Variable for Snowmelt Runoff Forecasting in Central Colorado, Proc. Final Workshop on Operational Applications of Satellite Snow Cover Observations, NASA CP-2116,
  40. PP. 151-69.
  41. Simpson, J.I., Stitt, J.R., Sienko, M., 1998, Improved Estimates of the Areal Extent of Snow Cover from AVHRR Data, Journal of Hydrology, 204, PP. 1-23.
  42. Stern R.D., 1980, The Calculation of Probability Distributions for Models of Daily Precipitation (Nigeria, India), Archiv fur Meteorologie, Geophysik and Bioklimatologie, Serie B, 28 (1-2), PP. 137-147.
  43. Wilks, D.S., 1999, Simultaneous Stochastic Simulation of Daily Precipitation, Temperature and Solar Radiation at Multiple Sites in Complex Terrain, Agricultural and Forest Meteorology, 96
  44. (1-3), PP. 85-101.