ارائۀ روشی برای اصلاح نوفۀ نواری آشکارسازها در تصاویر اخذشده به‌وسیلۀ سنجندۀ TM ماهوارۀ لندست 5

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استاد گروه سنجش از دور ، دانشکده مهندسی نقشه‌برداری دانشگاه صنعتی خواجه نصیرالدین طوسی

2 کارشناس ارشد مهندسی برق، مخابرات مؤسسۀ آموزش عالی خاوران

چکیده

نوفۀ آشکارسازها در تصاویر ماهواره‌ای معمولا به صورت نوارهای افقی یا عمودی دیده می‌شوند. جهت نوارشدگی‌ها به تکنیک تصویربرداری سنجنده (پوش‌بروم یا ویسک‌بروم) بستگی دارد. در تصاویر سنجندۀ TM نیز برخی نوارشدگی‌ها دیده می‌شود که منشأ آنها آشکارسازهاست. از دلایل پیدایش نوفۀ نواری در تصاویر اخذشده به‌وسیلۀ سنجندۀ TM می‌شود به تطابق نداشتن آشکارسازها، واسنجی نامناسب آشکارسازها و یا فرسایش آنها در طول زمان اشاره کرد. با توجه به اینکه سنجندۀ TM از تکنیک تصویربرداری ویسک‌بروم استفاده می‌کند، این نوارشدگی‌ها در تصاویر به‌صورت افقی دیده می‌شوند. نوفۀ نواری در تصاویر اخذشده در باند 4 از سطوح تاریک مانند دریا که در سطح یک پیش‌پردازش شده‌اند، رخ‌نمون بیشتری دارد. این نوع نوفه موجب بروز خطا در برخی اعمال مانند تصحیحات جوی بااستفاده از پیکسل‌های تاریک و دشوار شدن استخراج اطلاعات از تصاویر می‌شود. در این پژوهش، برای اصلاح نوفۀ نواری سنجندۀ TM، پس از شناسایی آشکارسازهای نوفه‌ای، روش‌های میانه (MM)، تطبیق ممان‌های مکانی اصلاح‌شده (MSMM) و پالایش تصویر در حوزۀ فرکانس و مکان (IFFD & IFSD) پیشنهاد شده است. برای بررسی نتایج حاصل، از برخی کمیت‌های آماری همچون میانگین و انحراف‌ معیار و نیز، نمودار فراوانی و طیف فوریۀ تصاویر پیش و پس از اصلاح استفاده شده است. انحراف معیار در تصویر اولیه برابر با 56/1 است که پس از اصلاح تصویر، مقدارهای این کمیت برای روش‌های MM، MSMM، IFFD و IFSD به‌ترتیب برابر با 36/1، 42/1، 31/1و 26/1 است. کاهش به‌وجودآمده در انحراف معیار پس از حذف نوف، نواری، بهبود تصاویر را نشان می‌دهد. برای مقایسۀ این روش‌ها با یکدیگر و با کارهای دیگران، از MSE، RMSE و PSNR و همچنین، داده‌های شبیه‌سازی‌شده برای نوفۀ نواری متناوب استفاده شده است. مقدارهای به‌دست‌آمده PSNR برای روش‌های MM، MSMM، IFSD و IFFD به‌ترتیب برابر با 66/54، 14/51، 47/48و 65/45 دسی‌بل است. در این میان، بیشترین میزان PSNR و به‌تبع آن، کمترین میزان MSE مربوط به روش MM و MSMM بود که نشان از دقت بیشتر این روش‌ها درمقایسه با پالایه‌های حوزۀ فرکانس و مکان دارد.

کلیدواژه‌ها


عنوان مقاله [English]

A Method for Detectors Stripe Noise Correction in Landsat5 TM Images

نویسندگان [English]

  • M.R Mobasheri 1
  • E Amraie 2
1 Prof., Remote Sensing Department, K.N. Toosi University of Technology
2 M.Sc. Student, Telecommunication Engineering, Khavaran Institue of Higher Education
چکیده [English]

Detectors noises in satellite images are seen as either vertical or horizontal stripes. The directions of these stripes depend on the imaging technique (Pushbroom or Wiskbroom). The main reasons in appearance of stripe noises in TM images are; lack of matching between detectors, unsuitable calibration and detector degradation in time. Due to the Wiskbroom technique in TM sensor, the stripes appear horizontally. Among these, the stripe noises in band4 are more profound in images acquired from dark surfaces such as sea surface. This kind of noise may produce sever errors in atmospheric correction based on dark surfaces. In this work, to correct the stripe noise, Mean Method (MM), Modified Spatial Momentum Matching (MSMM), and image filtering in frequency and spatial domain (IFFD & IFSD) are introduced. To evaluate the results, some statistical parameters such as averaging, standard deviation, histograms and Fourier spectrums before and after corrections are deployed. Reduction in standard deviation after denoising demonstrates enhancement in the image. To compare these methods with other known methods, parameters such as MSE, RMSE and PSNR along with simulated images for periodical striped noise are used. Among these, the maximum PSNR and naturally the minimum MSE belongs to MM and MSMM methods and consequently these methods perform better accuracies compared to IFFD and IFSD.

کلیدواژه‌ها [English]

  • Periodical Stripe Noise
  • Relative Calibration
  • Image Filtering
  • remote sensing
  1. Algazi, V.R, Ford, G.E, 1981, Radiometric Equalization of Nonperiodic Striping in Satellite Data, Computer Graphics And Image Processing. 16(3), 287 -295.
  2. Bisun, D., McVicar, T.R, Van Niel, T.G., Jupp, D.L.B. & Pearlman, J.S, 2003, Preprocessing EO-1 Hyperion Hyperspectral Data to Support the Application of Agricultural Indexes, IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 6, pp. 1246 - 1259.
  3. Lixin, S., Robert, N., Karl, S. & White, H.P., 2008, Automatic Destriping of Hyperion Imagery Based on Spectral Moment Matching, Canadian journal of Remote Sensing, Vol. 34, pp. 68-81.
  4. Mobasheri, M.R. & zendehbad, S.A., 2013, Diagnosis and Repair of Random Noise in the Sensors CHRIS-PROBA, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XL-1/W3.
  5. Markham, B.L., Chander, G. & Barsi, J.A., 2007, Revised Landsat-5 Thematic Mapper Radiometric Calibration, IEEE Transactions on Geoscience and Remote Sensing, Vol. 4, No. 3, pp. 490-494.
  6. Pande-Chhetri, R. & Abd-Elrahman, A., 2011, De-Striping Hyperspectral Imagery Using Wavelet Transform and Adaptive Frequency Domain Filtering, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 66, pp. 620–636.
  7. Tsai, F. & Chen, W., 2008, Striping Noise Detection and Correction of Remote Sensing Images, IEEE Transactions On Geoscience And Remote Sensing, Vol. 46, No. 12, pp. 4122 - 4131.
  8. Srinivasan, R., 1986, Noise Removal by the Karhunen -Loeve Transform, Proceeding of International Society for Photogrammetry and Remote Sensing Symposium, Vol. 26 -2, pp. 263 -273.
  9. Srinivasan, R., Cannon, M. & James, W., 1988, Landsat Data Destriping Using Power Spectra Filtering, SPIE-Optical Engineering, 27(11), 939 -943.
  10. Zhang, M., Carder, K., Muller-Karger, F.E., Lee, Z. & Goldgof, D., 1999, Noise Reduction and Atmospheric Correction for Coastal Applications of Landsat Thematic Mapper Imagery, Remote Sensing of Environment, Vol. 70, pp. 167–180.
  11. USGS, 2013, Landsat—A Global Land-Imaging Mission.
  12. وبگاه USGS، 2014:
  13. https://landsat.usgs.gov/science_L4-5_Cal_Notices.php