اندازه‌گیری تغییرات سطحی و سرعت حرکت یخچال علم‌چال با استفاده از تصاویر ماهواره‌ای و عکس‌های هوایی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار گروه عمران دانشکدة مهندسی، دانشگاه بوعلی سینا، همدان

2 استاد گروه فتوگرامتری و سنجش از دور، دانشگاه صنعتی خواجه نصیرالدین طوسی

3 دانشیار گروه فتوگرامتری و سنجش از دور، دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده

یخچال­های طبیعی و تغییرات و حرکت آنها در جایگاه شاخص­هایی برای نشان‌دادن تغییرات آب‌و‌هوایی به‌کار می‌روند و به‌منظور ارزیابی تغییرات سطحی یخچال ناشی از تغییرات اقلیمی، باید مطالعات بلندمدت انجام شود. استفاده از تصاویر ماهواره‌ای راهی مؤثر برای استخراج سرعت حرکت یخچال محسوب می‌شود. در این تحقیق با استفاده از عکس‌های هوایی قدیمی و تصاویر ماهواره‌ای جدید، تغییرات سطحی و بردارهای جابه‌جایی و سرعت یخچال علم‌چال، با استفاده از الگوریتم خودکار، محاسبه شده است. تمامی داده‌ها، شامل عکس‌های هوایی و تصاویر، به‌صورت ارتو[1] درآمدند و از نظر رادیومتریکی و هندسی همسان‌سازی شدند. با استفاده از عکس هوایی سال 1955 و مقایسة آن با تصویر SPOT سال 2003، میزان عقب‌نشینی یخچال در قسمت پیشانی آن به‌دست آمد. همچنین، تغییرات کوتاه‌مدت در دو بازة زمانی بین 1998 تا 2003 و 2003 تا 2005، با استفاده از عکس‌های هوایی و تصاویرSPOT  و Quick Bird، استخراج شد. در این تحقیق، با استفاده از روش مبتنی‌بر تبدیل فوریه و محاسبة همبستگی، بردار‌های سرعت سطحی با خطای کمتر از دو متر استخراج شد. نتایج دقت و قابلیت روش پیشنهادی را برای ارزیابی میزان عقب‌نشینی و نیز اندازه‌گیری سرعت سطحی یخچال نشان‌ می‌دهند و می‌توان این نتایج را به‌منظور مطالعات مربوط به تغییرات اقلیمی در سطح منطقه‌ای به‌کار برد.

کلیدواژه‌ها


عنوان مقاله [English]

Measurement of Surface Changes and Velocity fields of Alam-chal Glacier Using Satellite Imagery and Aerialphotos

نویسندگان [English]

  • , Y Rezaei 1
  • , M.J. Valadan Zouj 2
  • , M.R Sahebi 3
1 Assistant Prof., Dep. Of Civil Engineering, Faculty of Engineering, Bu-Ali Sina University
2 Prof. of Photogrammetry and Remote Sensing Department, Geodesy and Geomatics Faculty, K.N. Toosi University of Technology
3 Associate prof., Dep. of Photogrammetry and Remote Sensing, Geodesy and Geomatics Faculty, K.N. Toosi University of Technology
چکیده [English]

Mountain Glaciers are pertinent indicators of climate change and their surface velocity changes, are an essential climate variable. In order to retrieve the climatic signature from surface velocity, large scale study of glacier changes is required. Satellite remote sensing is an effective way to derive mountain glacier surface velocities. In this research, we have conducted a comprehensive assessment of Alam-Chal glacier surface changes (include displacement and velocity), all based on remotely-sensed data. All datasets include aerial photos and satellite images were ortho rectified, normalized and co-registered. By using an aerial photograph collected in 1955 as a baseline and comparing it against a 2003 image collected by the SPOT satellite, the glacier retreat, in direct response to changes in local climate conditions were extracted. Furthermore, we have assessed short-term changes over two-time scales (1988-2003, 2003-2005),using an aerial photo acquired in 1988, a 2003 SPOT image, and a high-resolution Quick Bird image collected over the study area in 2005. We have derived accurate glacier surface velocity vectors (RMSE~2m), based on an FFT-based image cross-correlation technique. Our results point to the capability of the proposed method in accurately retrieving glacier surface changes at a high level of spatial detail, which is important for studies of regional climate change.

کلیدواژه‌ها [English]

  • Glacier
  • Aerial photo
  • High resolution satellite images
  • spatial correlation
  • Fourier transform
  1. ولدان زوج، م.ج.، رضایی، ی.، وزیری، ف.، مباشری، م.ر.، 1387، بررسی یخچال طبیعی علم‌چال با استفاده از تصاویر ماهواره‌ای، نشریة علوم زمین، دورة 18، زمستان، ش. 70، صص. 13 -2.
  2. یمانی، م.، 1388، اندازه‌گیری حرکت سالیانة یخچال‌های علم‌کوه، پژوهش‌های جغرافیای طبیعی، ش. 67، صص. 52-31.
  3. Aizen, V.B., Kuzmichenok, V.A., Surazakov, A.B. & Aizen, E.M., 2007, Glacier Changes in the Tien Shan as Determined from Topographic and Remotely Sensed Data, Global and Planetary Change, 56, PP. 328−340.
  4. Avouac, J.P., Ayoub, F., Leprince, S., Konca, O. & Helmberger, D.V., 2006, The 2005, Mw 7.6 Kashmir Earthquake: Sub-Pixel Correlation of ASTER Images and Seismic Waveform Analysis, Earth and Planetary Science Letters, 249, PP. 514−528.
  5. Barnes, P. & Tabor, D., 1969, Plastic Flow and Pressure Melting in the Deformation of Ice, University of Cambridge.
  6. Berthier, E., Raup, B. & Scambos, T., 2003, New Velocity Map and Mass-Balance Estimate of Mertz Glacier, East Antarctica, Derived from Landsat Sequential Imagery, Journal of Glaciology, 49 (167), 503−511.
  7. Berthier, E., Vadon, H., Baratoux, D., Arnaud, Y., Vincent, C., Feigl, K.L., Re´my, F. & Legre´sy, B., 2005, Surface Motion of Mountain Glaciers Derived from Satellite Optical Imagery, Remote Sensing of Environment (ELSEVIER), 95, PP. 14−28.
  8. Bhardwaj, A., Sam, L., Martin-Torres, F.J. & Kumar, R., 2016, UAVs Asremote Sensing Platform in Glaciology: Present Applications and Future Prospects, Remote Sensing of Environment, 175, PP. 196−204.
  9. Bindschadler, R. & Scambos, T., 1991. Satellite-Image-Derived Velocity Field of an Antarctic Ice Stream, Science, 252 (5003): 242-246.
  10. Copland, L., Pope, S., Bishop, M.P., Shroder, J.F., Clendon, P., Bush, A., Kamp, U., Seong, Y.B. & Owen, L.A., 2009, Glacier Velocities across the Central Karakoram, Annals of Glaciology, 50 (52), PP. 41−49.
  11. Debella-Gilo, M. & Kääb, A., 2011, Sub-Pixel Precision Image Matching for Measuring Surface Displacements on Mass Movements Using Normalized Cross-Correlation, Remote Sensing of Environment, 115 (1), PP. 130−142.
  12. Dehecq, A., Gourmelen, N. & Trouve, E., 2015, Deriving Large-Scale Glacier Velocitiesfrom a Complete Satellite Archive: Application to the Pamir-Karakoram-Himalaya, Remote Sensing of Environment, 162, PP. 55−66.
  13. Deriche, R., 1992, Recursively Implementing the Gaussian and its Derivatives, Proceedings of the 2nd International Conference on Image Processing, Singapore.
  14. Dirk Scherler, Leprince, S. & Strecker, M.R., 2008, Glacier-Surface Velocities in Alpine Terrain from Optical Satellite Imagery-Accuracy Improvement and Quality Assessment, Remote Sensing of Environment (ELSEVIER), 112, PP. 3806−381.
  15. Dowdeswell, J.A. & Benham, T.J., 2003, A Surge of Perseibreen, Svalbard, Examined Using Aerial Photography and ASTER High Resolution Satellite Imagery, Polar Research, 22 (2), PP. 373−383.
  16. Fisher, G.H. & Welsch, B.T., 2008, FLCT: A Fast, Efficient Method for Performing Local Correlation Tracking, Subsurface and Atmospheric Influences on Solar Activity.
  17. Haeberli, W., Cihlar, J. & Barry, R.G., 2000, Glacier Monitoring within the Global Climate Observing System, Annals of Glaciology, 31, PP. 241−246.
  18. Haeberli, W., Hoelzle, M., Paul, F. & Zemp, M., 2007, Integrated Monitoring of Mountain Glaciers as Key Indicators of Global Climate Change: The European Alps, Annals of Glaciology, 46, PP. 150−160.
  19. Hale, D., 2007, A Method for Estimating Apparent Displacementvectors from Time-Lapse Seismic Images, Colorado School of Mines.
  20. Haug, T., Kääb, A. & Skvarca, P., 2010, Monitoring Ice Shelf Velocities from Repeat MODIS and Landsat Data: A Method Study on the Larsen C Ice Shelf, Antarctic Peninsula, and 10 other Iceshelves around Antarctica, The Cryosphere, 4 (2), PP. 161−178.
  21. Heid, T., 2011, Deriving Glacier Surface Velocities from Repeat Optical Images, University of Oslo.
  22. Kääb, A., 2002, Monitoring High-Mountain Terrain Deformation from Repeated Air- and Spaceborne Optical Data: Examples Using Digital Aerial Imagery and ASTER Data, ISPRS Journal of Photogrammetry & Remote Sensing, 57, PP. 39−52.
  23. Kääb, A., 2005, Combination of SRTM3 and Repeat ASTER Data for Deriving Alpine Glacier Flow Velocities in the Bhutan Himalaya, Remote Sensing of Environment (ELSEVIER), 94, PP. 463−474.
  24. Kannappan, P. & Sahoo, P.K., 1995, Rotation Invariant Separable Functions Are GAUSSIAN, SIAM Journal on Mathematical Analysis, 23, PP. 1342–1351.
  25. Leprince, S., Barbot, S., Ayoub, F. & Avouac, J.-P., 2007, Automatic and Precise Orthorectification, Coregistration, and Subpixel Correlation of Satellite Images, Application to Ground Deformation Measurements, Geoscience and Remote Sensing, IEEE Transactions on, 45 (6), PP. 1529−1558.
  26. McClellan, J.H., Schafer, R.W. & Yoder, M.A., 2003, Signal Processing First, Pearson Education, Inc., Pearson Prentice Hall.
  27. Wang, M., Cen, Y., Hu, X., Yu, X., Xie, N., Wu, Y., Xu, P. & Xu, D., 2009, A Weighting Window Applied to the Digital Image Correlation Method, Optics & Laser Technology, ELSEVIER 41 (2), PP. 154−158.
  28. Moussavi, M., Valadan Zouj, M.J., Vaziri, F., Sahebi, M. & Rezaei, Y., 2010, A New Glacier Inventory of Iran, Annals of Glaciology, 50 (53), PP. 93−103.
  29. Nobach, H. & Honkanen, M., 2005, Two-Dimensional Gaussian Regression for Sub-Pixel Displacement Estimation in Particle Image Velocimetry or Particle Position Estimation in Particle Tracking Velocimetry, Experiments in Fluids, 38 (4), PP. 511−515.
  30. Skvarca, P., Raup, B. & De Angelis, H., 2003, Recent Behaviour of Glaciar Upsala, a Fast-Flowing Calving Glacier in Lago Argentino, Southern Patagonia, Annals of Glaciology, 36 (1), 184−188.
  31. van Vliet, L., Young, I. & Verbeek, P., 1998, Recursive Gaussian Derivative Filters, Proceedings of the International Conference on Pattern Recognition, Brisbane.
  32. Yong, D., Teillet, P.M. & Cihlar, J., 2002, Radiometric Normalization of Multitemporal High-Resolution Satellite Images with Quality Control for Land Cover Change Detection, Remote Sensing of Environment (ELSEVIER), 82, PP. 123−134.