بررسی کارآیی روش‌های تصحیح اثر اتمسفر در برآورد تراکم تاج‌پوشش جنگل‌های گیلان با استفاده از شاخص‌های گیاهی حاصل از لندست 8

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری دانشکدة منابع طبیعی دانشگاه گیلان

2 استاد دانشکدة منابع طبیعی دانشگاه گیلان

چکیده

بازتابش پدیده‌های سطح زمین روی داده‌های سنجش از دوری تحت تأثیر عوامل گوناگونی مانند شرایط اتمسفر است. در برخی مطالعات لازم است اثر اتمسفر به شیوه‌های متفاوت و مناسبی حذف شود یا کاهش یابد. در این تحقیق، سه روش تصحیح اتمسفریک تفریق شیء تیره (DOS)، تجزیه و تحلیل سریع خط‌دید اتمسفر ازطریق طیف ابر مکعب (FLAASH)، شبیه‌ساز وکتوری ثانویة سیگنال ماهواره‌ای در طیف خورشیدی (SV6) روی سنجندة OLI ماهوارة لندست 8 جنگل‌های استان گیلان اعمال شده است. از هر تصویر، ده شاخص گیاهی استخراج شد. با استفاده از لایة پوشش جهانی، محدودة جنگل روی شاخص‌های متفاوت استخراج و با استفاده از روش شیءپایه، محدودة جنگل روی تصویر قطعه‌بندی شد. 91 قطعه به‌طور تصادفی انتخاب شد. با استفاده از شبکة نقطه‌چین به ابعاد 20×20 متر، تراکم تاج‌پوشش درختان در هر قطعه روی تصاویر گوگل مشخص شده است. آزمایش پیرسون برای آزمون معناداربودن همبستگی شاخص‌ها با نمونه‌های مرجع، رگرسیون خطی و غیرخطی برای مدل‌سازی تراکم تاج‌پوشش به‌کار رفت. نتایج نشان داد که مدل تصحیح برمبنای کد SV6 در مناطق جنگلی استان گیلان بهتر عمل کرده است. شاخص GARI حاصل از مدل تصحیح اتمسفریک DOS با خطای RMSE برابر 72/17 و شاخص ARVI حاصل از مدل تصحیح اتمسفریک SV6، FLAASH و تصویر اصلی OLI به‌ترتیب معادل 38/15، 87/15 و 78/21 کمترین میزان خطای RMSE را نشان داده است. کاهش آثار اتمسفر در فرایند پیش‌پردازش قبل از مدل‌سازی ضروری و پیشنهادشدنی است. 

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Atmospheric Correction Methods in Estimation of Forest Canopy Density of Guilan Province Using Vegetation Indices of Landsat 8 Data

نویسندگان [English]

  • S.A.R Nouredini 1
  • A.A Bonyad 2
1 Ph.D. Student, Faculty of Natural Resources, University of Guilan
2 Prof., Faculty of Natural Resources, University of Guilan
چکیده [English]

Reflectance of different of land surface phenomena on remote sensing data was influenced by different conditions including atmospheric conditions. Variety methods of atmospheric correction have been developed for remove and reduction of its effects. In this study three atmospheric correction methods: Dark Object Subtraction (DOS), Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubus (FLLASH) and Second Vector Simulation of Satellite Signal in the Solar Spectrum (6SV) have been applied on OLI sensor of Landsat8 inthe forest regions of Guilan province. Numbers of 10 vegetation indices were extracted from each image. Forest area was extracted on various indices detected by global land cover layer. Forest areas segmented on Landsat8 image by object-based method. In the total 91 segments, randomly were selected. Forest canopy density of any segment plot estimated on Google images using 20×20 m network dotted. Person test was used for correlation between indices and training samples and two linear and nonlinear regression models were used for forest canopy density estimation. The results confirmed that 6SV method dominates than other methods in the forest regions of Guilan province. The lowest root means square error (RMSE) with 17.72 was shown in the green atmospherically resistant vegetation index (GARI) extracted from DOS. The results indicated that the lowest RMSE was in atmospherically resistant vegetation index (ARVI) using 6SV, FLAASH and OLI original image with 18.38, 15.87 and 21.78 respectively. The results of this study were shown that use of atmospheric correction methods in preparing vegetation indices is cause of increasing information accuracy from satellite images. Reduction of atmosphere effects in preprocessing before modeling is necessary and suggestible. 

کلیدواژه‌ها [English]

  • Vegetation index
  • Forest canopy cover
  • remote sensing
  • LANDSAT 8
  1. Adler-Golden, S.M., Matthew, M.W., Bernstein, L.S., Levine, R.Y., Berk, A., Richtsmeier, S.C., Acharya, P.K., Anderson, G.P., Felde, J.W., Gardner, J.A., Hoke, M.L., Jeong, L.S., Pukall, B., Ratkowski, A.J. & Burke, H.K., 1999, Atmospheric Correction for Shortwave Spectral Imagery Based on MODTRAN4, Imaging Spectrometry, PP. 6 –69.
  2. Agapiou, A., Hadjimitsis, D.G., Papoutsa, C., Alexakis, D.D. & Papadavid, G., 2011, The Importance of Accounting for Atmospheric Effects in the Application of NDVI and Interpretation of Satellite Imagery Supporting Archaeological Research: The Case Studies of Palaepaphos and Nea Paphos sites in Cyprus, Remote Sens, 3, PP. 2605–2629.
  3. Bazrafkan, A., Bavaghar, M.P. & Fathi, P., 2014, Capability of Liss III Data for Forest Canopy Density Mapping in Zagros Forests, Iranian Journal of Forest, 6 (4), PP. 387–401.
  4. Canty., M., 2008, Automatic Radiometric Normalization of Multitemporal Satellite Imagery with the Iteratively Re-Weighted MAD Transformation, Remote Sensing of Environment, 112 (3), PP. 1025–1036.
  5. Carreiras, J.M.B., Jose, M.C., Pereira, J. & Pereira, S., 2006, Estimation of Tree Canopy Cover in Evergreen Oak Woodlands Using Remote Sensing, Forest Ecology and Management, 223: 45–53.
  6. Chander G., Markham, B.L. & Helder, D.L., 2009, Summary of Current Radiometric Calibration Coefï‌cients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors, Remote Sensing of Environment, 113 (5), PP. 893–903.
  7. Crippen, R.E., 1990, Calculating the Vegetation Index Faster, Remote Sensing of Environment, 34, PP. 71–73.
  8. Gao, J., 2009, Digital Analysis of Remotely Sensed Imagery, The McGraw Hill Companies.
  9. Gitelson, A.A., Kaufman, Y.J. & Merzlyak, M.N., 1996, Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS, Remote Sensing of Environment, 58, PP. 289–298.
  10. Hadjimitsis, D.G., Papadavid, G., Themistocleous, K., Hadjimitsis, M.G., Retalis, A., Michaelides, S., Chrysoulakis, N., Toulios, L. & Clayton, C.R.I., 2010, Atmospheric Correction for Satellite Remotely Sensed Data Intended for Agricultural Applications: Impact on Vegetation Indices, Nat. Hazard. Earth Syst, 10, 89–95.
  11. Jofer, R., 1993, Estimation Tree Density in Oak Savanna-Like Dehesa of Southern Spain from SPOT Data, Int. J. Remote Sens, 14 (4), PP. 685–697.
  12. Hu, Y., Liu, L., Liu, L., Peng, D., Jiao, Q. & Zhang, H., 2014, A Landsat-5 Atmospheric Correction Based on MODIS Atmosphere Products and 6S Model, Applied Earth Observations and Remote Sensing, 7 (5), PP. 1609–1615.
  13. Huete, H., Liu, Q., Batchily, K. & Van Leeuwen, W., 1997, A Comparison of Vegetation Indices over a Global Set of TM Images for EOS-MODIS, Remote Sensing of Environment, 59, PP. 440–451.
  14. Huete, A.R., 1988, A Soil-Adjusted Vegetation Index (SAVI), Remote Sensing of Environment, 25, PP. 295–309.
  15. Jordan, C.F., 1969, Derivation of Leaf Area Index from Quality of Light on Forest Floor, Ecology, 50, PP. 663–666.
  16. Ju, J., Roy, D.P., Vermote, E., Masek, J. & Kovalskyy, V., 2012, Continental-Scale Validation of MODIS-Based and LEDAPS Landsat ETM+ Atmospheric Correction Methods, Remote Sensing of Environment, 122, PP. 175–184.
  17. Kaufman, Y.J. & Tanre, D., 1998, Algorithm for Remote Sensing of Tropospheric Aerosol from MODIS, Goddard Space Flight Center NASA MODIS Algorithm Theoretical Basis Document, Vol. 85.
  18. Kaufman, Y.J. & Tanre, D., 1992, Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS, IEEE Trans. Geosci. Remote Sens, 30 (2), PP. 261–270.
  19. Kim, C., Heo, J., Bin Lee, J., Han, S., Jung, J.H. & Jayakumar, S.A., 2012, Synergetic Approach to Estimating Timber Age Using Integrated Remotely Sensed Optical Image and in Sar Height Data, Int. J. Remote Sens, 33, PP. 243–260.
  20. King, M.D., Tsay, S.C. & Platnick, S.E., 1997, Cloud Retrieval Algorithms for MODIS: Optical Thickness, Effective Particle Radius, and Thermodynamic Phase, MODIS Algorithm Theoretical Basis Document, No. ATBD-MOD, Vol. 5.
  21. Masek, J.G., Vermote, E.F., Saleous, N.E., Wolfe, R., Hall, F.G., Huemmrich, K.F., Gao, F., Kutler, J. & Lim, T.K., 2006, A Landsat Surface Reflectance Dataset for North America 1990–2000, IEEE Geoscience and Remote Sensing Letters, 3, PP. 68–72.
  22. Menzel, W., Seemann, S. & Li, J., 2002, MODIS Atmospheric Proï‌le Retrieval Algorithm Theoretical Basis Document (MOD-07), Eos ATBD web site [Online]. Available: http://modis-atmos.gsfc.nasa.gov/docs/MOD07MYD07ATBDC005.pdf, p. 39.
  23. Nazeer, M., Nichol, J.E. & Yung, Y.K., 2014, Evaluation of Atmospheric Correction Models and Landsat Surface Reflectance Product in an Urban Coastal Environment, Int. J. Remote Sens, 35, PP. 6271–6291.
  24. Nguyen, H.C., Jung, J., Lee, J., Choi, S., Hong, S. & Heo, J,. 2015, Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor, Sensors, 15, PP. 18865–18886.
  25. Pakkhesal, E. & Bonyad, A.E., 2013, Classification and Delineating Natural Forest Canopy Density Using FCD Model (Case Study: Shafarud Area of Guilan), Iranian Journal of Forest and Poplar Research, 21 (1), PP. 99–114.
  26. Parma, R. & Shataee, S., 2010, Capability Study on Mapping the Diversity and Canopy Cover Density in Zagros Forests Using ETM+ Images (Case Study Ghalajeh Forests, Kermanshah Province), Iranian Journal of Forest, 2 (3), PP. 231–242.
  27. Pathak, N.V., Pandya, M.R., Shah, D.B., Trivedi, H.J., Patel, K.D., Sridhar, V.N. & Singh, R.P., 2014, Inter Comparison of Atmospheric Correction Models-SACRS2, FLAASH AND 6SV USING RESOURCESAT-2 AWIFS Data, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XL–8.
  28. Rondeaux, G., Steven, M. & Baret, F., 1996, Optimization of Soil-Adjusted Vegetation Indices, Remote Sensing of Environment, 55, PP. 95−107.
  29. Rouse, J.W., Haas, R.W., Schell, J.A., Deering, D.W. & Harlan, J.C., 1974, Monitoring the Vernal Advancement and Retro Gradation (Green Wave Effect) of Natural Vegetation, NASA/GSFCT Type III Final Report, Greenbelt, MD, USA.
  30. Roy, D.P., Ju, J. & Kline, K., 2010, Web-enabled Landsat Data (WELD): Landsat ETM+ Composited Mosaics of the Conterminous United States, Remote Sensing of Environment, 114 )1(, PP. 35–49.
  31. Roy, D.P., Qin, Y., Kovalskyy, V., Vermote, E.F., Ju, J., Egorov, A., Hansen, M.C., Kommareddy, I., Yan, L., 2014, Conteminous United States Demonstration and Characterization of MODIS-based Landsat ETM+ Atmospheric Correction Remote Sensinos of Environment, 140: 433-449.
  32. Roy, D.P., Wulder, M.A., Loveland, T.A., Woodcock, C.E., Allen, R.G., Anderson, M.C., Helder, D., Irons, J.R., Johnson, D.M., Kennedy, R., Scambos, T.A., Schaaf, C.B., Schott, J.R., Sheng, Y., Vermote, E.F., Belward, A.S., Bindschadler, R., Cohen, W.B., Gao, F., Hipple, J.D., Hostert, P., Huntington, J., Justice, Kilic, C.O., Kovalskyy, A., Lee, V., Lymburner, Z.P., Masek, L., McCorkel, J.G., Shuai, J., Trezza, Y., Vogelmann, R. J., Wynne, R.H., Zhu, Z., 2014, Landsat-8: Science and Product Vision for Terrestrial Global Change Researchو Remote Sensing of Environment, 145, PP. 154–172.
  33. Song, C., Woodcock, C.E., Seto, K.C., Lenney, M.P. & Macomber, S.A., 2001, Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects, Remote Sensing of the Environment, 75, PP. 230–244.
  34. Tanre, D., Deroo, C. & Duhaut, P., 1990, Technical Note Description of a Computer Code to Simulate the Satellite Signal in the Solar Spectrum: The 5S Code, Int. J. Remote Sens, 11 (4), PP. 659–668.
  35. Tucker, C.J., 1979, Red and Photographic Infrared Linear Combinations for Monitoring Vegetation, Remote Sensing of Environment, 8, PP. 127–150.
  36. Vermote, E., Tanre, D. & Deuze, J., 2006, Second Simulation of a Satellite Signal in the Solar Spectrum-Vector (6SV), 6S User Guide Version.
  37. Yan, L. & Roy, D.P., 2014, Automated Crop Field Extraction from Multi-Temporal Web Enabled Landsat Data, Remote Sensing of Environment, 144, PP. 42–64.