پتانسیل‌یابی معدنی و تلفیق اطلاعات داده‌های ژئوفیزیکی مغناطیس‌سنجی هوابرد و داده‌های ماهواره‌ای سنجنده ابرطیفی EO-1، استر ASTER و لندست -7 ETM+ (ورقه 1:100000 مشکین‌شهر)

نوع مقاله : علمی - پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه مهندسی نفت و ژئوفیزیک، دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه

2 دانشیار، دکتری تخصصی الکترومغناطیس ،گروه مهندسی نفت و ژئوفیزیک، دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود

3 دانشیار، دکتری تخصصی اکتشاف معدنگروه مهندسی نفت و ژئوفیزیک، دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود

چکیده

پیدایش و گسترش ابزارهای پیشرفته سنجش ‌از دور و ژئوفیزیک در زمینه اکتشاف منابع معدنی در دهه‌های اخیر، نشان‌دهنده اهمیت این صنعت است. در این پژوهش، از سنجنده‌هایETM+، ASTER، داده‌های‌هایپریون EO-1 و داده‌های مغناطیس‌سنجی هوابرد به صورت همزمان به‌منظور پتانسیل‌یابی منابع معدنی، پهنه‌بندی نواحی دگرسانی و شناسایی بخش‌های پنهان کانی‌زایی معدنی از شمال‌شرقی مشکین‌شهر تا نواحی شمال‌غربی شهرستان سراب استفاده‌شده است. با استفاده از داده‌های مغناطیسی هوابرد، نقشه برگردان به قطب شده، نقشه مشتق قائم، نقشه زاویه کجی، نقشه گرادیان افقی کل، نقشه سیگنال تحلیلی و نقشه ادامه فراسو تا ارتفاع 1000 متری از سطح زمین برای منطقه مورد مطالعه تهیه شده است. همچنین با استفاده از داده‌های دورسنجی روش‌های نقشه‌برداری زاویه طیفی، آنالیز مولفه اصلی به ترتیب به عنوان روش‌های طیف مبنا و آمار پایه و روش فیلتر تطبیقی ترکیبی تعدیل شده برای منطقه مورد مطالعه تهیه و مورد بررسی قرار گرفته است. با توجه به شواهد زمین‌شناسی و نتایج حاصل از این پژوهش، اعم از چشمه‌های آب‌گرم، گسل‌های فعال و فراوان و گنبدهای ولکانیکی، دگرسانی‌ها و مناطق مستعد که دارای پتانسیل‌ بالایی از منابع معدنی هستند، شناسایی و ارزیابی شدند. دگرسانی‌های سیلیسی و کائولینیتی در شمال مشکین‌شهر، در نیمه شمال غربی سبلان (دره موئیل) و در شمال‌غربی سراب از مهم‌ترین آنومالی‌های معدنی در این منطقه محسوب می‌شوند که با معادن فعال سیلیس، کائولن، سرب و مس در منطقه مورد مطالعه انطباق کامل دارند در نهایت از تمامی محدوده‌های پتانسیل‌یابی در منطقه مورد مطالعه، نمونه و آنالیز XRD تهیه شد که نتایج روش‌ها با یکدیگر همخوانی و مطابقت کاملی دارند. به همین دلیل استفاده از روش‌های یاد‌شده برای دسترسی به نتایج مناسب‌تر، برای انطباق نتایج داده‌ها با هم ضروری به‌نظر می‌رسد. 

کلیدواژه‌ها


عنوان مقاله [English]

Mineralization potential and integration of airborne magnetometric geophysical data data and EO-1, ASTER ester and Landsat-7 ETM + hyperspectral satellite data (Sheet 1: 100,000 Meshkinshahr)

نویسندگان [English]

  • saeed Mojarad 1
  • Ali Nejati kalate 2
  • Hameid Aghajani 3
1 M.Sc. Graduated, Department of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
2 Assistant Professor, Department of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
3 Assistant Professor, Department of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
چکیده [English]

In this study, processing and interpretation methods in remote sensing such as visual and spectral analysis have been performed on the EO-1, ASTER and ETM+ data from Meshkinshahr North area, and as a result, the alteration zones in the area have been identified. Then result Aeromagnetic data, using geological information, alteration and mineralization from the area.  Development of advanced tools in remote sensing and geophysical exploration during recent decades indicates the necessity and importance of these tools in industry. For this purpose, a variety of image processing methods are used Aeromagnetic methods have an important role for exploration of metallic ore deposits. To achieve good results from these methods. In order to identify alteration zones, image processing methods such as PCA (principal component analysis), SAM (spectral angle mapping) and MTMF (Matched Filtering MF) using ENVI software were applied on the Hyperion EO-1, ASTER and ETM+ images from the study area. After removal of the noise from observed magnetic data, processing steps were considered, including IGRF subtraction for the proper years, reduction to pole, Signal Analytic, Tilt (TDR), THDR, and upward continuation 1000 meters. Identification of alteration zones in the study area using remote sensing and image processing methods, and interpretation of the geophysical Aeromagnetic results using geological and Mineralization and Hot Springs and Faults information in the area have been led to the identification of Alteration zone. Many Anomaly and Alterations Kaolinite and silica located in the Meshkinshahr north area (northwest Sabalan) and the other many situated in the northwest Sarab. For credibility of results, samples were taken and analyzed by XRD methods. Confirmed the results of remote sensing and aeromagnetic processes. Conclusions of this research revealed that applying concurrency both the remote sensing and aeromagnetic data could be led to improve the precision of the results.

کلیدواژه‌ها [English]

  • hyperspectral
  • ASTER
  • Spectral Angle Mapping
  • Alteration
  • Magnetometric
  • Tilt Angle
  1. احمدزاده، غ.، جهانگیری، ا.، مجتهدی، م و لنتز، د.، 1389، پتروژنز سنگ‌های آتشفشانی پتاسیک و فوق پتاسیک پس از برخوردی پلیو-کواترنری در شمال باختر مرند، سازمان زمین‌شناسی و اکتشافات معدنی کشور، فصلنامه علوم زمین، شماره 78، ص 79-86.
  2. آقازاده، م.، امامی، م.ه.، وزیری، م.، رشیدنژاد، ع.، نعمت‌الله و کاسترو، آ.، 1389، پلوتونیسم شوشونیتی، آداکیتی (C-type) و لامپروفیری پس از برخورد در توده خانکندی، ارسباران (شمال باختر ایران)، سازمان زمین‌شناسی و اکتشافات معدنی کشور، فصلنامه علوم زمین، شماره 78، ص 173-189.
  3. حیدری، م.، ١٣٩٢، پتروگرافی، کانی‌سازی، ژئوشیمی، مغناطیس‌سنجی محدوده تپه قرمز، معدن سنگ آهن سنگان خواف: پایان‌نامه کارشناسی ارشد زمین‌شناسی اقتصادی، دانشگاه فردوسی مشهد، ١٥٩صفحه.
  4. سایت سازمان زمین‌شناسی ایالات متحده، WWW.USGS.GOV
  5. سایت سازمان زمین‌شناسی و اکتشافات معدنی کشور، WWW.GSI.IR
  6. شهری، م. ر.، -١٣٨٤، مبانی اکتشافات ژئوفیزیک، دانشگاه فردوسی مشهد.
  7. نجفیان، ط.،،1391، نقشه برداری از کانی‌های مناطق دگرسان‌شده منطقه سرچشمه استان کرمان با استفاده از داده‌های چندطیفی و ابر طیفی، پایان‌نامه کارشناسی ارشد رشته مهندسی معدن، گرایش اکتشاف، دانشگاه شهید باهنر کرمان.
  8. نجفیان، ط،. رنجبر، ح. و فتحیان پور، ن.، 1390، بررسی قدرت تفکیک آلتراسیون‌های مرتبط با کانسارهای مس پورفیری با استفاده از تجمع طیفی داده‌های ALI ، ASTER اولین کنگره‌ی جهانی مس، تهران، صفحات .
  9. یعقوب‌پور، ع. م.، مبانی زمین‌شناسی اقتصادی، مرکز نشر دانشگاهی، 266 1366ص.
  10. Adams, J.B., Smith, M.O. & Johnson, P.E., 1986, Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 site, Journal of Geophysical Research: Solid Earth, 91(B8), pp.8098-8112.
  11. Amidi, M., 1978, 1:250,000 geological quadrangle map of Iran: Ahar. Ministry of Mines and Metals, Geological Survey of Iran, Tehran.
  12. Anderson, T.W., Anderson, T.W., Anderson, T.W., Anderson, T.W. & Mathematicien, E.U., 1958, An introduction to multivariate statistical analysis (Vol. 2, pp. 5-3). New York: Wiley.
  13. Arkani-Hamed, J. & Urquhart, W.E.S., 1990, Reduction to pole of the North American magnetic anomalie, Geophysics, 55 (2), 218-225.
  14. Bishop, J.R. & Lewis, R.J.G., 1992, Geophysical signatures of Australian volcanic hosted Massive Sulfide deposits, Economic Geology, N 87, 913-930.
  15. Blakely, R. J., 1996, Potential Theory in Gravity and Magnetic Application, Cambridge University Press, Cambridge, UK, p. 441.
  16. Emami, M.H., 1994, 1:100,000 geological map of Iran, Sheet 5566, Ministry of Mines and Metals, Geological Survey of Iran, Tehran.
  17. ENEL, 1983, Geothermal Power Development Studies in Iran, General Report on Sabalan Zone. Ente Nazionale per l’Energia Elettrica (Italy) report to the Ministry of Energy, Islamic Republic of Iran, Tehran, 220 pp.
  18. Fanaee Kheirabad, G.A. & Oskooi, B., 2011, Magnetotelluric interpretation of the Sabalan geothermal field in the northwest of Iran, Journal of the Earth and Space Physics, 37, 1-11.
  19. Friedman, J., Hastie, T. & Tibshirani, R., 2001, The elements of statistical learning (Vol. 1, pp. 337-387), New York: Springer series in statistics.
  20. Ganiyu, S. A., Badmus, B. S., Awoyemi, M.O., Akinyemi, O. D., & Olurin, O. T., 2013,
  21. Upward continuation and reduction to pole process on aeromagnetic data of Ibadan area, South-Western Nigeria, Earth Science Research, 2, 66–73.
  22. Gupta, H.K. & Roy, S., 2003, geothermal energy: an alternative resource for the 21st century, First edition, Elsevier, 279 P.
  23. Guun, P. J., Madment, D., & Miligan, P.R., 1997, Interpretation of aeromagnetic data in area of limited outcrop, AGSO Journal of Australian Geology and Geophysics, 17(2), 175-185.
  24. Hsu, S. K., Coppens, D. & Shyu, C. T., 1998, Depth to magnetic source using thegeneralized analytic signal, Geophysics, 63, 1947-1957.
  25. Jahangiri, A., 2007, Post-collisional Miocene adakitic volcanism in NW Iran: Geochemical and geodynamic implication, Journal of Asian Earth Sciences, 30, 433-447.
  26. Jamali, H., Dilek Y., Daliran F., Yaghubpur A.M. & Mehrabi B., 2009, Metallogeny and tectonic evolution of the Cenozoic Ahar- Arasbaran volcanic belt, northern Iran-International geology review, ifirst article, 2009, 1-23.
  27. Jolliffe, I.T., 2002, Principal components as a small number of interpretable variables: some examples, Principal Component Analysis, pp.63-77.
  28. KML, 1998, Sabalan geothermal project, Stage 1—Surface exploration, final exploration report, Kingston Morrison Limited Co., report 2505-RPT-GE-003 for the Renewable Energy Organization of Iran, Tehran, 83 pp.
  29. Kruse, F.A., Boardman, J.W. & Huntington, J.F., 2003, Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping, IEEE Transactions on Geoscience and Remote Sensing, 41(6), pp.1388-1400.
  30. Kruse, F.A., Lefkoff, A.B., Boardman, J.W., Heidebrecht, K.B., Shapiro, A.T., Barloon, P.J. & Goetz, A.F.H., 1993, The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data, Remote sensing of environment, 44(2-3), pp.145-163.
  31. Manouchehri, M., 1989, 1:250,000 Geological quadrangle map of Iran, Tabriz-Poldasht No. B1 & B2. Ministry of Mines and Metals, Geological Survey of Iran, Tehran.
  32. Neawsuparp, K., Charusiri, P. & Meyers, J., 2005, New processing of airborne magnetic and electromagnetic data and interpretation for subsurface structures in the Loei Area, Northeastern Thailand, ScienceAsia 65, 546-56.
  33. Nejad, J.E., 1987, 1:250,000 scale geological quadrangle map of Iran, NO D2 Ardabil. Ministry of Mines and Metals, Geological Survey of Iran, Tehran.
  34. Oskooi, B., Mohammadi, B. & Mirzaei, M., 2014, A Study on the Geothermal Reservoirs in Mahallat Area, Markazi Province by 1D and 2D Inversion of the Magnetotelluric Data, Iran Geophysics Magazine, 8 (2), 10-25.
  35. Omrani, J., Agard, Ph., Whitechurch, H., Benoid, M ,Prouteau, G. & Jolivt, L., 2008,Arc-Magmatism and subduction history beneath the Zagros Mountain, Iran: A new report of adakites and geodynamic consequences, Lithos 106, 380-398.
  36. Paterson, N. R. & Reeves, C.V., 1985, Applications of gravity and magnetic,
  37. Pearson, K., 1901, LIII. On lines and planes of closest fit to systems of points in space, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), pp.559-572.
  38. Ranjbar, H., Honarmand, M. & Moezifar, Z., 2004, Application of the Crosta technique for porphyry copper alteration mapping, using ETM+ data in the southern part of the Iranian volcanic sedimentary belt, Journal of Asian Earth Sciences, 24(2), pp.237-243.
  39. Richards, J.A. and Richards, J.A., 1999, Remote sensing digital image analysis (Vol. 3), Berlin et al.: Springer.
  40. Sabins, F.F., 1999, Remote sensing for mineral exploration, Ore Geology Reviews, 14(3-4), pp.157-183.
  41. Saibi, H., Nishijmia, J., Hirano, T., Fujimitsu, Y. & Ehara, S., 2008, Relation Between Structure and LowTemperature Geothermal System in Fukuoka City, Southwestern Japan, Earth Planets Space, 60, 821-826.
  42. Salati, E., Shahri, M.H., Karimpour, M.H. & Moradi, M., 2008, Ground Magnetic Survey for Exploration of Massive Sulfide in Northeast Iran, Journal of applied Sciences, 8(22), pp.4051-4060.
  43. Siemon, B., 2001, Improved and new resistivity _ depth profiles for helicopter electromagnetic data, Journal of Applied Geophysics, No. 4.
  44. SKM (Sinclair Knight Merz), 2003, Northwest Sabalan geothermal project, MT survey reanalysis, Report submitted to SUNA. (12 P).
  45. SKM (Sinclair Knight Merz), 2005, Resource review of the Northwest Sabalan geothermal project, Report submitted to SUNA. (61 P).
  46. Surveys: The state of the art in 1985, Geophysics, 50, 2558-2594.
  47. Tarlowski, C., Gunn, P.J. & Mackey, T., 1997, Enhancements of the magnetic map of Australia, AGSO Journal of Australia Geology and Geophysics, 17 (2), 77-82.
  48. TBCE, 1979, Geothermal power development studies, Sabalan zone. Tehran Berkeley Consulting Engineers, report to the Ministry of Energy, Islamic Republic of Iran, Tehran, 950 pp.
  49. Van der Meer, F. & De Jong, S., 2003, Imaging Spectrometery. Basic Principles and Prospective Applications, 4. Kluwer Achademic Publishers, Dordrecht/ Boston/ London, 35 p.