نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشکده ژئودزی و ژئوماتیک، دانشگاه صنعتی خواجه نصیرالدین طوسی

2 استاد گروه فتوگرامتری و سنجش از دور، دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده

وجود اسپکل در تصاویر رادار با روزنه مصنوعی، به دلیل سیستم تصویربرداری همدوس، باعث ایجاد اثر دانه دانه‌ای در تصویر شده و برخی پردازش‌های شی‌گرا همانند قطعه‌بندی، خوشه‌بندی و یا شناسایی هدف را تحت تاثیر قرار می‌دهد. از این‌رو می‌توان اغلب الگوریتم‌های مورد استفاده در کاهش اثر اسپکل را در یکی از روش‌های مبتنی بر حوزه مکان، روش‌های مبتنی بر تبدیل و یا روش‌های وابسته به بهینه‌سازی طبقه‌بندی کرد. از جمله محدودیت‌های موجود در روش‌های مورد استفاده اغلب می‌توان به عدم حفظ بافت و ساختار تصویر و نیز وابستگی‌ اجرای الگوریتم به یک یا چند پارامتر تنظیم‌کننده اشاره کرد که همین موضوع، استفاده از این روش‌ها را در کاربردهای عملی با چالش رو به رو می‌سازد. از این‌رو در پژوهش حاضر، با در نظر گرفتن رفتار فرکانسی تصاویر SAR، روشی بر مبنای فیلترینگ تطبیقی طیف اندازه در حوزه فرکانس ارائه شده است. ایده اصلی روش پیشنهادی تخصیص یک مدل تحلیلی بر مبنای رفتار فرکانسی تصویر SAR، به طیف اندازه تبدیل فوریه آن و بازیابی خروجی با اثر اسپکل کاهش یافته است. روش پیشنهادی ضمن حفظ بافت‌های ظریف تصویر، به طور قابل ملاحظه‌ای اثر اسپکل را کاهش می‌دهد. علاوه بر آن الگوریتم پیشنهادی به صورت خودکار اجرا شده و نیازی به برآورد پارامترهای تنظیمی ندارد. همچنین در تصاویر با پیچیدگی بافت زیاد و در روش‌های کانوولوشن مکانی که نیاز به تنظیم ابعاد کرنل دارد، مرتبه محاسباتی پایین‌تری خواهد داشت. نتایج ارزیابی نشان می‌دهد که الگوریتم پیشنهادی در مقایسه با فیلترهای مکانی تطبیقی، ضمن بهبود 50 درصدی شاخص تعداد منظرهای معادل در تصاویر SAR، مقدار شاخص حفظ لبه را نیز به طور میانگین برای تصاویر SAR و شبیه‌سازی SAR حدوداً 50  و 30 درصد بهبود می‌بخشد.

کلیدواژه‌ها

عنوان مقاله [English]

Speckle reduction in SAR images based on an adaptive filtering in the frequency domain

نویسندگان [English]

  • Hamid Jannati 1
  • Mohammad Javad Valadan Zoej 2

1 Department of Photogrammetry and Remote sensing, College of Geodesy and Geomatics, K. N. Toosi University of Technology

2 Professor in Department of Photogrammetry and Remote sensing, College of Geodesy and Geomatics, K. N. Toosi University of Technology

چکیده [English]

Speckle in Synthetic aperture radar images makes grainy effects, because of the coherent imaging system which cause some difficulties in object-oriented processes, like segmentation or classification. Therefore, a lot of methods have been developed for speckle reduction purpose. These methods can be classified but not limited in some approaches, like spatial based, transform based and optimization, which mostly suffer from limitations like edge and texture destruction and also regulating parameter dependence. In this paper a new structure has been presented based on adaptive filtering of the amplitude response of the discrete fourier transform of the image in the frequency space, which not only reduces the speckle but also preserves edges and delicate textures. In addition, it has low level of computation and complexity compared to the kernel dependent spatial approaches. The main contribution of the paper is to fit a predefined analytical function to amplitude response of the discrete fourier transform of the image, in order to recover underlying speckle reduced SAR image. Proposed method, improves equivalent number of looks index 50 percent and edge preservation index 50 and 30 percent for real and simulated synthetic aperture radar images, respectively.

کلیدواژه‌ها [English]

  • SAR images
  • speckle reduction
  • frequency domain
  • Fourier transform
  • amplitude spectrum
  • non-linear filtering
Argenti F. & Alparone, L., 2002, Speckle removal from SAR images in the undecimated wavelet domain, IEEE Trans, Geosci. Remote Sens., 40, pp. 2363–2374.
Argenti, F., Lapini, A., Bianchi, T. & Alparone, L., 2013, A tutorial on speckle reduction in synthetic aperture radar images, IEEE Geosci. Remote Sens. Mag, 1, pp. 6–35.
Aubert, G. & Aujol, J.F., 2008, A variational approach to remove multiplicative noise, SIAM J. Appl. Math., 68, pp. 925–946.
Bianchi, T., Argenti, F. & Alparone, L., 2008, Segmentation-based MAP despeckling of SAR images in the undecimated wavelet domain, IEEE Trans. Geosci. Remote Sens., 46, pp. 2728–2742.
Deledalle, C.A, Denis, L. & Tupin, F., 2015, A. Reigber, and M. Jager, NL-SAR:A unified nonlocal framework for resolution-preserving (Pol) (In) SAR denoising, IEEE Trans. Geosci. Remote Sens, 53, pp. 2021– 2038.
Deledalle, C.-A., Denis, L., Poggi, G., Tupin, F. & Verdoliva, L., 2014, Exploiting patch similarity for SAR image processing: The nonlocal paradigm, IEEE Signal Process. Mag., 31, pp. 69–78.
Franceschetti, G. & Lanari, R., 1999, Synthetic Aperture Radar (SAR), CRC Press. 
Frost, V. S., Stiles, J. A., Shanmugan, K. S. & Holtzman, J. C., 1982, A model for radar images and its application to adaptive digital filtering of mul-tiplicative noise, IEEE Trans. Pattern Anal. Mach. Intell., 4,pp. 157–166.
Kang, M., Yun, S. & Woo, H., 2013, Two-level convex relaxed variational model for multiplicative denoising, SIAM J. Imag. Sci., 6, pp. 875–903.
Lee, J.-S, 1983, Digital image smoothing and the sigma filter, Comput. Vis. Graph. Image Process., 24, pp. 255–269.
Lee, J.-S. Wen, J.-H. ,Ainsworth, T. L., Chen, K.-S. & Chen, A. J., 2009, Improved sigma filter for speckle filtering of SAR imagery, IEEE Trans. Geosci. Remote Sens., 47, pp. 202–213.
Li, Y., Gong, H., Feng, D. & Zhang, Y., 2011, An adaptive method of speckle reduction and feature enhancement for SAR images based on curvelet transform and particle swarm optimization, IEEE Trans. Geosci. Remote Sens., 49, pp. 3105–3116.
Liu, S., Liu, M., Li, P., Zhao, J., Zhu, Z. & Wang, Z., 2017, SAR Image Denoising via Sparse Representation in Shearlet Domain Based on Continuous Cycle Spinning, IEEE transactions on geoscience and remote sensing, 55, pp. 2985-2992.
Lopes, A., Touzi, R. & Nezry, E., 1990, Adaptive speckle filters and scene heterogeneity, IEEE Trans. Geosci. Remote Sens, 28, pp. 992–1000.
 
Martino, G.D. & Poggi, G., 2016, Scattering-Based SARBM3D, IEEE journal of selected topics in applied earth observations and remote sensing, 9(6), pp. 2131 – 2144.  
Martino, G.D. & Riccio, D., 2014, Benchmarking Framework for SAR Despeckling ,IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 52, pp. 1596 - 1615.
Nezry, E., Lopes, A. & Touzi, R., 1992, Detection of structural and textural features for SAR images filtering, in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS’91), pp. 2169–2172.
Nugroho, H. A., Triyani, Y., Rahmawaty, M., Ardiyanto, I. & Choridah, L., 2016, Performance Analysis of Filtering Techniques for Speckle Reduction on Breast Ultrasound Images, IEEE, International Electronics Symposium (IES).  
Oliver, C. & Quegan, S., 2004, Understanding Synthetic Aperture Radar Images. Raleigh, NC, USA: SciTech.
Parrilli, S., Poderico, M., Angelino, C.V. & Verdoliva, L., 2012, A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage, IEEE Trans. Geosci. Remote Sens., 50, pp. 606–616.
Ranjani, J.J. & Thiruvengadam, S.J., 2010, Dual-Tree complex wavelet trans-form based SAR despeckling using interscale dependence, IEEE Trans.Geosci. Remote Sens., 48, pp. 2723–2731.
Solbo, S. & Eltoft, T., 2004, Homomorphic wavelet-based statistical despeck-ling of SAR images, IEEE Trans. Geosci. Remote Sens., 42, pp. 711–721.
Torralba, A. & Oliva, A., 2003, Statistics of natural image categories, Network: Computation In Neural Systems, 14 391–412.
Touzi, R., Lopes, A. & Bousquet, P., 1988, A statistical and geometrical edge detector for SAR images, IEEE Trans. Geosci. Remote Sens., 26, pp. 764–773.
Wang, Y., Yang, J., Yin, W. & Zhang, Y., 2008, A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imag. Sci., 1, pp. 248–272.
Xu, B., Cui, Y., Li, Z. & Yang, J., 2015, An iterative SAR image filtering method using nonlocal sparse model, IEEE Geosci. Remote Sens. Lett. 12(8), pp. 1635–1639, Aug.
Zhang, W., Liu, F., Jiao, L., Hou, B., Wang, S. & Shang, R., 2010, SAR image despeckling using edge detection and feature clustering in bandelet domain, IEEE Geosci. Remote Sens. Lett., vol. 7, no. 1, pp. 131–135.